

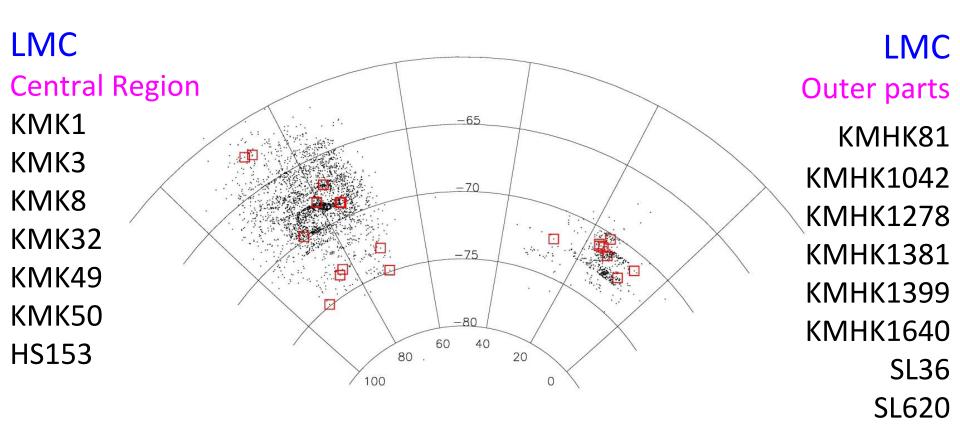
Age - metallicity relation in the MCs clusters

E. Livanou(1), M. Kontizas(1), A. Dapergolas(2), B. Nordström(3), E. Kontizas(2), J. Andersen(3,5), B. Dirsch(4) & A. Karampelas(1)

- (1) Section of Astrophysics Astronomy & Mechanics, Department of Physics, University of Athens,
- (2) Institute of Astronomy and Astrophysics, National Observatory of Athens,
- (3) Niels Bohr Institute Copenhagen University, Astronomical Observatory,
- (4) Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Argentina
- (5) Nordic Optical Telescope, Santa Cruz de La Palma, Spain

Goal

- trace evidence of an age metallicity relation (AMR) in the Magellanic Clouds (MCs).
- correlate it with the interactions of the MCs and
- correlate the AMR with the spatial distribution of the clusters.



Observations

- 15 LMC and 8 SMC clusters, scattered all over the area of these galaxies, to cover a wide spatial distribution and metallicity range.
- In the LMC we study small open star clusters, young up to 2 Gyr
- The selected LMC clusters were observed with the 1.54m Danish Telescope in Chile, using the Danish Faint Object Spectrograph and Camera (DFOSC).
- The SMC clusters were observed with the ESO
 3.6m Telescope, also in Chile, using the ESO Faint
 Object Spectrograph and Camera (EFOSC).
- **-** 1997-2002

Data

SMC

L11, L17, L80, L113, NGC330, NGC361, NGC376, NGC419

Methods

- Isochrone fitting was used to determine the ages and metallicities.
- We used Strömgren filters in order to achieve reliable metallicities from photometry.

- ☐ Excellent metallicity indicator for late type stars (Richtler, 1988, 1989; Grebel & Richler, 1992)
- ☐ Particularly efficient when performed with a CCD in dense star fields like the MCs.

Strömgren filters

Mean wavelength and half-widths of response functions

	u	٧	b	У	β_{narrow}	β_{wide}
Peak wavelength (nm)	350	411	467	547	485.8	485
Half-width (nm)	30	19	18	23	2.9	12.9

Indices

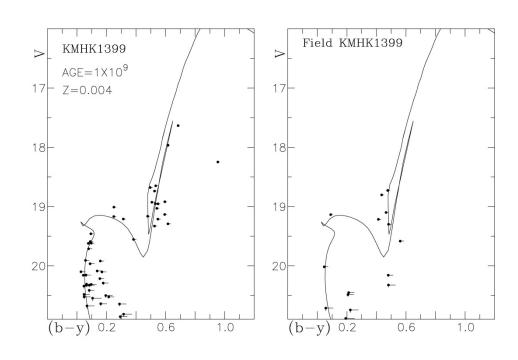
b-y,
$$m_1$$
, c_1 , β
 $m_1 = (v - b) - (b - y)$
 $c_1 = (u - v) - (v - b)$
 $\beta = \beta_{narrow} - \beta_{wide}$

Use

y magnitudes are well-correlated with <u>Johnson-Morgan V mags</u>.

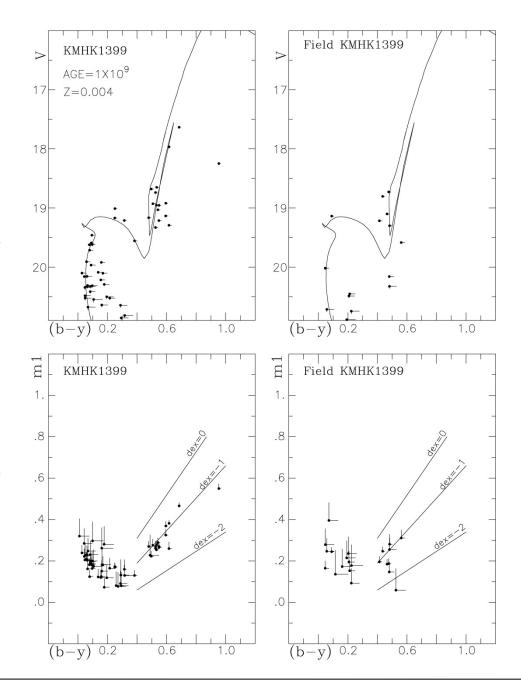
m1 is sensitive to the <u>metallicity</u> (measure of <u>line blanketing</u>).

b-y is sensitive to stellar <u>temperature</u> (measure of <u>continuum</u>).

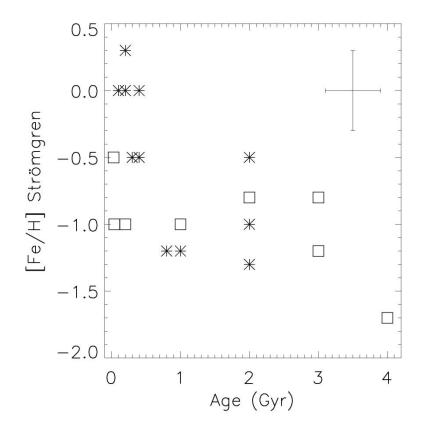

c1 is sensitive to the <u>surface gravity</u> (measures <u>Balmer discontinuity</u> strength).

Example cluster KMHK 1399

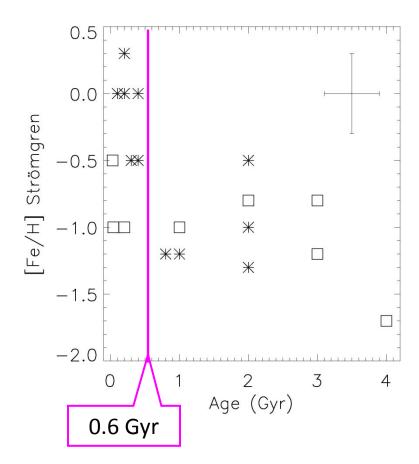
AGE


- 1. A central region around each cluster (~0'.75 radius), in order to include the largest proportion of cluster members.
- 2. A region characterizing the nearby field stellar population (same area).
- 3. Produce the Strömgren V, (b-y) CMDs. Comparison of the two diagrams may determine of the cluster members.
- 4. Then we fit the isochrone that best describes the stellar population of the cluster. (Padova Isochrones with an appropriate transformation for the Strömgren magnitudes).
- 5. The isochrones provide the parameters of age in Gyr and metallicity Z.

Example cluster KMHK 1399Metallicity

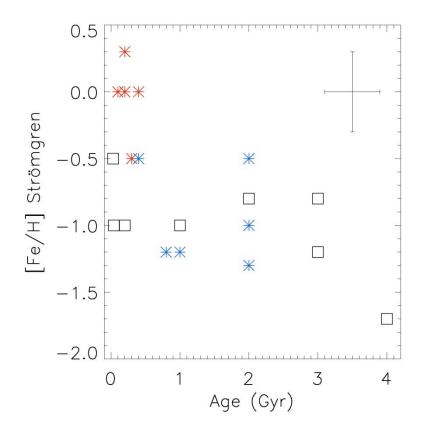

- 1. The diagrams m1, (b-y) from the Strömgren magnitudes were produced for the cluster and the field.
- 2. Three lines of constant metallicity (Hilker et al., 1995) are overplotted.
- 3. We trace the red supergiants of the cluster on the V, (b-y) CMD. We again have to compare with red supergiants of the field.
- 4. Following the red supergiants on m1, (b-y) diagram we compare with the model lines and derive the metallicity value [Fe/H].
- 5. When cluster supergiants an not be determined we adopt metallicity estimated by the isochrones.

Age - metallicity relation


* : LMC : SMC

Age - metallicity relation

* : LMC : SMC



Age - metallicity relation

* : LMC outer parts

* : LMC central parts

: SMC

Results

- The LMC displays a clear trend of AMR with higher metallicities found in the young clusters, a result expected in the normal evolution of a galaxy's stellar content.
- LMC shows an increase in metallicity at ages of about 0.6 Gyr. This could be the result of the most recent encounter in the LMC-SMC that has produced intense star formation in the LMC.
- A clear spatial metallicity gradient is observed in the LMC. The clusters with metallicities -1.0 to -1.5 are those found in the outer regions of the LMC. This is an indication that the recent star formation in the LMC occurs in the central regions.
- In the SMC there is no indication of an AMR relation, possibly because of the small sample we used or because of a different history of star formation in this galaxy; however, this investigation again displays the known result that the LMC is more metal rich than the SMC galaxy.

