Coronal Mass Ejections Basic observational facts & outstanding questions

Spiros Patsourakos, University of Ioannina, Greece

How it all started

Brueckner et al. 1972 Toussey et al. 1972

What is a CME?

The 80's- early 90's picture (transient expulsion of coronal mass & frozen-in b-field into the IP medium): Hundhausen et al. 1984

(Hund-

hausen et al., 1984), as expressed in Schwenn (2006): "We define a CME to be an observable change in coronal structure that 1) occurs on a time scale of a few minutes and several hours and 2) involves the appearance (and outward motion) of a new, discrete, bright, white light feature in the coronagraph field of view."

What is a CME?

The current picture (add FR topology & width): Vourlidas et al. 2013

We define an FR-CME to be the eruption of a coherent magnetic, twist-carrying coronal structure with angular width of at least 40° and able to reach beyond $10~\text{R}_{\odot}$ which occurs on a time scale of a few minutes to several hours.

How do we observe CMEs?

- WL observations → photospheric light scattered by free coronal electrons ~ n
- Coronagraphs SOHO/LASCO C1-C2, STEREO/COR1,2 → 1.1-30 Rs
- Heliospheric imagers HI1,HI2 (on STEREO)→ 15-330 Rs
- Future (SoloHI; WISPR; A. Vourlidas lecture)
- Future (ASPIICS; as low as 1.05 Rs K. Tsinganos lecture)

How do we observe CMEs?

- EUV/SXR line emissions ~ n^2 * F(T)
- Disk imagers SOHO/EIT, EUVI/STEREO, SDO/AIA → (0-1.4 Rs)
- Disk (Hinode/EIS) & coronal (SOHO/UVCS) spectrometers

How do we observe CMEs?

• Non-thermal emissions in the HXRs and radio domains (RHESSI, NRH, WIND/WAVES, ARTEMIS) \rightarrow sites of particle acceleration & shocks (0.0-215) Rs (M. Mathioudakis & E. Kontar's lectures)

No routine observations of CME magnetic fields in the corona! But check Tun & Vourlidas 2013 for one such determination @ ~ 1.2 Rs

CMEs are a major driver of Space Weather

Earth-dicteded & south Bz → geomagnetic storms (Bothmer & Daglis 2007) fast CMEs → shocks → gradual SEP events (Reames 1990)

NASA/CCMC simulation of a CME propagation in the heliosphere

squares → spacecraft circles → planets

Major boosts of CME observations in the last 20 years

SOHO 1996-now

almost continuous observations of CMEs on disk and in the corona for two solar cycles → unprecedented statistics & basic understanding

STEREO 2006-now

multi-viewpoint observations of CMEs from the Sun to 1 AU → reveal the 3D structure & evolution of CMEs; connect imaging w/ in-situ

SDO 2008-now

high cadence, multi-temperature observations of CME onsets & FD photospheric b-field

pre-eruptive configurations; tracking of ultra-fast events

CME occurrence rates

of CMEs roughly follows the solar cycle 0.5 CMEs/day → 4 CMEs/day

Gopalswamy et al. 2010

More flares than CMEs →

more "difficult" to make a CME than a flare?

RHESSI web-site

Source regions of CMEs

Solar source regions of 49 CMEs from STEREO observations Bein et al. 2012

CMEs can originate from :
Quiet Sun regions → no flare
Active regions → possibly a
flare

CME crucial stats I

Gopalswamy et al. 2010

Speeds in the range ~ 300 —2000 km/s Few events w/ > 1000 km/s \rightarrow shocks

CME crucial stats II

Vourlidas et al. 2010

Masses $\sim 10^15$ gr: $1/10^15$ of solar mass lost by CMEs per year Mechanical energy $\sim 10^31$ ergs --- compare w/ flare energy (e.g., M. Mathioudakis & E. Kontar lectures)

CME crucial stats III

CME-filament eruptions associations: tight

60% of CMEs associated w/ filament eruptions (Subramanian & Dere 2001)
72% of filament eruptions associated w/ CMEs (Gopalswamy et al. 2003)

CME-flare associations: the bigger the flare the more possible there is an associated UME

55 % of M-class flares have associated CMEs
100% of X-class flares have associated CMEs (Harisson 1995;Andrews 2003)

Temporal relationships between flares & CMEs

Height

Velocity

acceleration

Zhang et al. 2001
Bein et al. 2012
close
synchronization
between HXRs
(flare energy release)
&
CME acceleration

Temmer et al. 2010

CMEs and flares are different facets of a common process (more later on the school)

What is the source of the CME energy?

Table 1. Energy Requirements for a Moderately Large CME		
Parameter	Value	
Kinetic energy (CME, prominence, and shock)	10 ³² ergs	
Heating and radiation	10 ³² ergs	
Work done against gravity	10 ³¹ ergs	
Volume involved	$10^{30} \mathrm{cm}^3$	
Energy density	$100 \mathrm{ergs} \mathrm{cm}^{-3}$	

Forbes 2000

Table 2. Estimates of Coronal Energy Sources			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Energy Density	
Form of Energy	Observed Average Values	ergs cm ⁻³	
Kinetic $((m_p n V^2)/2)$	$n = 10^9 \mathrm{cm}^{-3}, V = 1 \mathrm{km s}^{-1}$	10 ⁻⁵	
Thermal (nkT)	$T = 10^6 \text{K}$	0.1	
Gravitational $(m_p ngh)$	$h = 10^5 \mathrm{km}$	0.5	
Magnetic $(B^2/8\pi)$	B = 100 G	400	

CME energy comes from coronal magnetic energy

Important definitions

Magnetic flux rope =

a coherent toroidal magnetic structure with field-lines twisted around its major axis (e.g., Chen 1989) check out for compexity in b-field in L. Vlahos's lecture

Manchester et al. 2004

Magnetic Arcade =

an array of magnetic loops following magnetic neutral lines (=a flux rope that has not fully emerged into the solar atmosphere)

shearing an arcade → flux rope w/ hot plasma van Ballegooijen & Martens 1989 proccess recovered by MHD models

CME morphology from coronagraphs: 3-part structure (limb events)

Example
of flux rope
model
(Lin 2004)

b-field from CME MHD simulation

synthetic WL image Vourlidas et al. 2013

CME morphology from coronagraphs: 5-part (+shock)

CME morphology from coronagraphs: halo CMEs

halo

"snow"→ relativ protons reaching L1

CME onset on disk

Observations of dimmings/EUV waves close to disk center suggest an Earth-directed CME (e.g., Thompson et al. 2001) but this in not always the case (more later on during the school)

CME onset at the limb

Time, distance

Expanding loops → cavity

Dimming

EUV Wave

AIA 193A 2010/06/13 05:30:18

How common is the FR topology in CMEs observed with coronagraphs?

Flux-rope geometrical model simultaneously fits STEREO CME observations from multiple viewpoints *Thernisien et al.* 2009

at least 40% of > 10000 CMEs observed by LASCO In coronagraph FoV are FRs *Vourlidas et al. 2013*

In-situ observations of CMEs

In-situ observations of CMEs show that are are often ~ 30% (*Richardson & Cane 2010*) magnetic clouds (MCs)

- : high B
- : smooth b-field rotation
- : low-β plasma

The magnetic field in MCs is consistent with flux rope models *Lepping et al.* 1991

Magnetic flux ropes (FRs): a major element of Sun-Earth Connections

Sun ????

Do FRs pre-exist or do they form on the fly?
How are they formed?
Almost ALL
CME models involve FRs at some stage

coronagraphs

1 AU

magnetic clouds

Hot FRs observed around CME onsets

Zhang et al. 2012

Sample movies of hot FRs

Edge-on view
Patsourakos et al. 2013

face-on view Cheng et al. 2014

Magnetic field extrapolations in the corona show FRs

Chintzoglou et al. 2014

94 A image

Propagation of CMEs: The STEREO era

Track & characterize CMEs all way from the Sun to Earth & connect w/in-situ

w/out proper multi-viewpoint analysis one could get issues (e.g. confuse rotation w/ expansion) e.g., Nieves-Chinchilla 2013

Tools to analyze CMEs with STEREO I

Forward geometrical modeling: Thernisien et al. 2009 fits the CME envelope & gives CME <u>height, size, direction, tilt</u> rather robust to changes in most of its parameters (few degrees) not internal stucture of CME

http://secchi.nrl.navy.mil/wiki/pmwiki.php?n=Main.DataProcessingAndAnalysis

Tools to analyze CMEs with STEREO

Triagulation: Inhester 2006; Aschwanden 2001 pick up the same feature in a STEREO pair → "true" height

Tools to analyze CMEs with STEREO

J-maps: make assumption regarding the

CME shape & sometimes its speed (constant) &

propagation direction (constant)

→ CME speed & direction

(Sheeley et al. 1999; Lugaz et al. 2010; Davies et al. 2012)

fast (one plot to analyze) but need to be first to be sure on what feature we select

CME deflections I

CME deflections II

Bosman et al. 2012
39 CME in 2010
deflections~ [5,60] deg
from SR to 20 Rs
coverging towards equator

CME lat offset from SR

deflections → magnetic field gradients
(strong → weak)
Cremades, Bothmer, Tripathi 2006
Gopalswamy et al. 2010
Panasenco et al. 2011

CME rotate close to Sun 1.1-5 Rs

CME rotate close to Sun 1.1-5 Rs

3D reconstructions of prominence rotations

Bemporad, Mierla, Tripathi 2011

Thompson, Kliem, Torok 2012

rotations \sim [30,90] deg

cause of rotation?

kink instability of twisted FRs

twist → writhe convertion

Torok & Kliem 2005

CME deflections close to the Sun: Modeling

CME deflection & rotation from $30 \text{ Rs} \rightarrow 1 \text{ AU}$

Isavnin, Vourlidas, Kilpua
2013,2014
15 CMEs 2008-2010
deflection ~ 2-30 deg
rotation ~ 2-80 deg
60% of variation in
the first 30 Rs

longitude

Interaction of CME with Parker spiral

Wang et al. 2004

Weak CME b-field; how about solar-max CMEs?

Sun-to-Earth transit of CMEs

Colannino et al. 2013

Statistical studies of CME trajectories from observations 30-120 deg away from Sun-Earth line

Colaninno, Vourlidas, Wu 2013 Mostl et al. 2014

Arrival times ~ +- 6 hours Arrival speeds ~ +- 150 km/s

Obs along Sun-Earth line give +- 15 hours (Gopalswamy et al. 2001)

Observations away from
Sun-Earth line improve
predictions of
arrival times/speeds of CMEs

Forces on CMEs

Self-Lorentz (hoop force)

It is a toroidal force on a current-carrying loop

e.g., Chen 1989, Vrsnak 2008

Summary & Outlook

Flux-ropes are commonly found in CMEs observed with coronagraphs and in-situ @ 1 AU. Whether FRs pre-exist CME onsets and how they are formed is open.

Statistics of FRs in hot emissions (AIA; Solar Orbiter/Fe XVII G. Zouganelis lecture; ASPIICS in Ca XV? K. Tsinganos lecture) combined with detailed magnetic

All these problems require an extensive theory&modeling

CMEs are exciting&important phenomena & their comprehensive study requires a new generation of scientists with solid foundations on solar, IP and magnetospheric physics

Velli & A. Vourlidas lectures) & above the ecliptic (Solar Orbiter) are required.