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THE SOLAR CORONA

• The solar `atmosphere’

• Gas temperatures: 104-107 oK

• Magnetic pressure several orders of magnitude higher than 
plasma pressure (β<<1)

• Extends from the photosphere (    ) to the base of the solar 
wind (         )

r⊙
∼ 2r⊙

J×B = 0
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∇×B = 0

∇×B = αB

∇ ·B = 0

• Potential:

• Linear force-free:

• Non-linear force-free 



NUMERICAL METHODS

• Direct extrapolation of boundary conditions: ill-posed problem 
for elliptic equations!

• Initial potential field, then progressively currents are introduced 
into the system: works for small deviations from potential field.

• MHD relaxation into force-free state: not too accurate.

• Optimization approach: requires vector magnetogram data at all 
boundaries of a computational box.

• Full MHD with solar wind.



NUMERICAL METHODS

• Optimization approach:

Computing Nonlinear Force-Free Coronal Magnetic Fields in Spherical Geometry 229

Recently, Schrijver et al. (2006) compared the performance of six different Cartesian
nonlinear force-free extrapolation codes in a blind algorithm test. All algorithms yield non-
linear force-free fields that agree well with the reference field in the deep interior of the
volume, where the field and electrical currents are strongest. The optimization approach
also successfully reproduced the weak field regions and compute the magnetic energy con-
tent correctly with an accuracy of 2%. In a coordinated study Amari, Boulmezaoud, and Aly
(2006) obtained an accuracy of somewhat better than 2%.

The good performance of the optimization method encourages us to develop a spherical
version of the optimization code. The required full-disk vector magnetograms will become
available soon (e.g., from SOLIS). The heritage of the newly developed code is a Cartesian
force-free optimization method as implemented by Wiegelmann (2004). We outline the pa-
per as follows. In Section 2 we describe our newly developed algorithm. Section 3 contains
a semi-analytic test case and the setup of computations to check the accuracy and perfor-
mance of our code. We introduce figures of merit to rate the quality of our reconstruction in
Section 4 and present the results of our test runs in Section 5. Finally, we draw conclusions
in Section 6 and give an outlook for future work.

2. Method

Force-free magnetic fields have to obey the equations

(∇ × B) × B = 0, (1)

∇ · B = 0. (2)

We solve Equations (1) and (2) with the help of an optimization principle as proposed
by Wheatland, Sturrock, and Roumeliotis (2000) and generalized by Wiegelmann (2004).
Until now the method has been implemented in Cartesian geometry.

Here we define a functional in spherical geometry:

L =
∫

V

[
B−2

∣∣(∇ × B) × B
∣∣2 + |∇ · B|2

]
r2 sin θ dr dθ dφ. (3)

It is obvious that the force-free equations (1) and (2) are fulfilled when L equals zero. We
normalize the magnetic field with the average radial magnetic field on the photosphere and
the length scale with a solar radius.

The functional (3) can be numerically minimized with the help of the iteration equations:

∂B
∂t

= µF (4)

where µ is a positive constant and

F = ∇ × (!a × B) − !a × (∇ × B) + ∇(!b · B) − !b(∇ · B) +
(
!2

a + !2
b

)
B (5)

with

!a = B−2[(∇ × B) × B
]
, (6)

!b = B−2[(∇ · B)B
]
. (7)
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force-free case. The non-force-free reconstruction requires additional data as input,
e.g., the coronal plasma density distribution from an assumed model or computed
with the help of tomographic methods.

We outline the paper as follows. In Section 2 we provide the basic equations
of the modified optimization method and derive the iteration equations. In Sec-
tion 3 we specify useful forms of the weighting function in the boundary regions.
Section 4 contains test runs regarding the nonlinear force-free case and Section 5
consistency checks for non-force-free configurations. We draw conclusions in Sec-
tion 6 and give an outlook for further research.

2. Basic Equations

Force-free coronal magnetic fields have to obey the equations

j × B = 0, (1)

∇ × B = µ0j, (2)

∇ · B = 0. (3)

The force-free approach is valid in the low corona where the plasma β is small.
For extended structures, e.g., helmet streamers, the plasma β increases and the
force-free assumption is not valid anymore. Therefore it is necessary to consider
the effect of plasma pressure and gravity here and solve the magneto hydrostatic
equations (MHS)

j × B − ∇P − ρ∇# = 0, (4)

∇ × B = µ0j, (5)

∇ · B = 0, (6)

where B is the magnetic field, j the electric current density, P the plasma pressure,
ρ the plasma density, µ0 the vacuum permeability and # the solar gravity potential.
We define the functional

L =
∫

V

w(x, y, z) B2 ($2
a + $2

b) d3x, (7)

with

!a =
{

B−2 [(∇ × B)] (force-free fields),

B−2 [(∇ × B) × B − µ0(∇P + ρ∇#)] (MHS),
(8)
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NUMERICAL METHODS

• Full MHD with solar wind:

it typically ranges from 3 to 5 near the solar surface and from 5
to 10 at several solar radii. Such a high density contrast is also a
good target feature to reproduce with the simulation.

In the practice of MHD simulations, the boundary treatment
on the solar surface is important. Because the plasma flow near
the solar surface is sub-Alfvénic, there is nonlinear MHD inter-
action between the solar surface and corona. Therefore, MHD
simulations with a simple boundary condition, such as the fixed
boundary, may be unable to produce steady coronal structure, as
pointed out by Wu et al. (1996).

The projected normal characteristic method has been devel-
oped to deal with the temporal variation of MHD variables on
the sub-Alfvénic simulation boundary surface (Nakagawa &
Steinolfson 1976; Nakagawa 1980, 1981a, 1981b; Nakagawa
et al. 1987; Wu & Wang 1987). It uses the concept of charac-
teristics in a hyperbolic system (e.g., Jeffrey & Taniuti 1964).
The advantage of time-dependent MHD simulation using this
method is that the computed temporal evolution of MHD var-
iables on the sub-Alfvénic computational boundary will match
both the governingMHD equation and the given boundary con-
ditions. There have been several successful simulation studies
in various areas of solar physics using this method (e.g., Wu
et al. 2001).

In this paper, we consider a new boundary treatment model
for MHD simulation of the solar corona and solar wind. Our
boundary treatment has three notable features. (1) It is based
on the concept of the projected normal characteristic method.
(2) The solar surface mass flux is limited so that the simulated
solar wind mass flux will match the Ulysses measurements.
(3) It produces a higher, more realistic contrast of the plasma
conditions between the coronal hole and streamer. The sim-
ulated results satisfy the MHD equations fully, from the inner
boundary to the outer boundary, and, at the same time, have
good agreements with the observed solar wind and corona at
two different heliocentric distances. In addition, the limit of the
mass flux will generate adequate contrast of the plasma density
and temperature; therefore, our boundary treatment will be a
powerful approach to retrieve the three-dimensional structure
of the solar corona and solar wind.

We provide a general description of the MHD code in x 2.
Our boundary model is described in x 3, and its details are in
Appendix B. To test our new boundary treatment, we carried
out two-dimensional MHD simulations for 1:01 R! < r <
300 R!. In order to compare the simulation results with the
Ulysses data, we use the observed axisymmetric dipole and
quadrupole components of the solar magnetic field of 1995
April as one of the boundary conditions. The simulation results
are shown in x 4, and the discussion is presented in x 5.

2. METHOD

2.1. Basic Equations

The basic equations governing the simulated solar wind are
the time-dependent MHD equations in the frame rotating with
solar sidereal angular velocity 6,

@%

@t
¼#:= (%V ); ð2Þ

@(%V )

@t
¼#: Pg þ %VV # 1

4!
BBþ B2

8!

! "
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B2
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! "
V # 1
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where %, V, B, Pg, E, r, t, ggg, and " are the mass density, velocity
of the plasma flow viewed in the rotating frame, magnetic field
vector, gas pressure, energy density E ¼ %v 2/2þ Pg/(" # 1)þ
B2/2, position vector originating at the center of the Sun, time,
solar gravitational force ggg ¼#GM /r 3 = r, and specific heat ratio,
respectively. This study neglects the solar differential rotation
for simplicity, and the sidereal angular velocity of the solar ro-
tation, j6j, is taken to be 2!/25:3 radian day#1 (or 14N2 day#1).
The specific heat ratio " is assumed to be 1.05 and constant every-
where so that the trans-Alfvénic solar wind will be obtained.

2.2. Simulation Code

The grid system was constructed in the spherical coordinate
system covering the heliocentric distance from 1 to 300 R!. The
cell sizes along the radius !r are fixed at 0.01 R! near the so-
lar surface in order to treat the steep gradient of density. Be-
yond 1.1 R!,!r is set proportional to ln r in the trans-Alfvénic
region and proportional to

ffiffi
r

p
in more distant regions, so that a

total of 256 grid points can cover from 1.01 to 300 R!. The grid
size at the outermost several grid points is fixed at 3.5 R!. The
latitude from the north pole (# ¼ 0) to the south pole (# ¼ !) is
also covered by the grid points with the constant angular inter-
val !# equal to !/128.

The MHD simulation code of our model is based on the con-
cept of total variation diminishing (TVD; e.g., Harten 1983; Brio
&Wu 1988) and the monotonic upstream scheme for conserva-
tion laws (MUSCL; van Leer 1979). The finite-volume method
(e.g., Tanaka 1995) is also used. Letting the column vector U
represent the dependent variables in order,

U ¼ %; %Vr; %V#; %V$; Br; B#; B$; E
& 'T

; ð6Þ

the discretized form of the right-hand side of the governing
equations (2)–(5) can be written as

RHSm ¼ # 1

!V

X
Fm =n!sþ Sm; ð7Þ

where the subscript m denotes variables of U in the order of
equation (6), and F, n, and !s represent the flux vector, the
vector normal to the cell boundary surface, and the area of the
cell boundary, respectively. The volume of the numerical cell,
!V , is equal to (!r3/3) !(#cos #)(!$)½ (. The area of the cell
interface,!s, is set to r 2!(#cos #)!$,!(r 2/2)(sin #)!$, and
!(r 2/2)!# for radial, latitudinal, and longitudinal directions,
respectively. The source term S contains the gravitational, cen-
trifugal, and Coriolis forces and the energy source due to these
forces. The longitudinal angular size!$ is set equal to!#, and
one longitudinal layer is simulated in this two-dimensional sim-
ulation study.

To deal with the large gradient near the inner boundary sur-
face due to the gravity of the Sun and preserve the conservative
quantities, we used a set of normalized conservative variables

(r2%; r2%Vr; r2%V#; r2%V$; rBr; rB#; rB$; r2E): ð8Þ

Note that this normalization does not affect the variables with
the dimension of speed such as V and B%#1/2. The MUSCL
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FORCE-FREE ELECTRODYNAMICS



Contopoulos, Kalapotharakos, Georgoulis

1. Introduction

Force-Free Electrodynamics (hereafter FFE) is a formal name for time-dependent
electromagnetism in an ideal plasma with negligible inertia (ρ = 0) and negligible
gas pressure (β = 0). The formalism of FFE has been developed for various
relativistic astrophysical applications (pulsars, astrophysical jets, gamma-ray
bursts, etc.) where the plasma supports electric currents and electric charges
(Gruzinov, 1999). The equations of FFE are Maxwell’s equations with nonzero
electric fields as follows:

∂E
∂t

= c∇×B− 4πJ , (1)

∂B
∂t

= −c∇×E , (2)

∇ · B = 0 . (3)

These equations are coupled by the ideal MHD condition

E · B = 0 , (4)

implying that in an ideal plasma E and B are everywhere perpendicular, and
the force-free condition

ρeE +
1
c
J×B = 0 . (5)

Here, J is the electric current density, and ρe ≡ (4π)−1∇ ·E is the electric charge
density. Gruzinov (1999) showed that it is possible to solve for J in the above
set of equations and thus express the electric current density as a function of the
electric and magnetic field, namely

J =
c

4π
∇ · E E×B

B2
+

c

4π

(B ·∇×B−E ·∇×E)
B2

B . (6)

One can then numerically integrate Maxwell’s equations (eqs 1, 2) to obtain
the time evolution of the electric and magnetic fields. We developed a three-
dimensional (hereafter 3D) finite-difference time-domain (FDTD) cartesian FFE
code with non-reflecting, perfectly absorbing outer boundaries applied success-
fully to the 3D structure of the pulsar magnetosphere (Kalapotharakos and
Contopoulos, 2009; see also Yee, 1966; Spitkovsky, 2006).

We then realized that the same formalism may be applied to follow the
temporal evolution of any open force-free ideal-MHD system from an initial
to a final magnetostatic configuration (i.e. with zero initial and final electric
fields) when the magnetic field distribution at a boundary evolves for a finite
number of time-iteration steps. After sufficient time, when the magnetic field at
the boundary will have reached a given distribution, and all electric fields will
have relaxed to zero, the above expressions degenerate into the following limited
set of steady-state FFE equations,

J =
c

4π
∇×B , (7)

SOLA: Solar_Field_Reconstruction_SoPh.tex; 29 July 2010; 16:06; p. 2
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• When electric fields die out:

• The final FFE equilibrium solution can be viewed as a solution of 
the above equations satisfying a given normal-field distribution on 
the boundary. 

• Given the ill-posed nature of this problem (only the normal field 
component on the boundary is known), this solution is not 
unique and depends on the initial magnetostatic configuration 
and on the course toward equilibrium.

FORCE-FREE ELECTRODYNAMICS

J =
c

4π
∇×B

J×B = 0

∇ ·B = 0



• Time relaxation:

Contopoulos, Kalapotharakos, Georgoulis

2003) but they require immense computing resources. To our knowledge, the only
technique providing a global solar nonlinear force-free field is the optimization
method of T. Wiegelmann and collaborators. A magnetostatic version of this
method was proposed by Wiegelmann (2007). The main idea was to simultane-
ously minimize the Lorentz force (∇ × B) × B and the divergence (∇ · B) of
the field in the extrapolation volume in spherical coordinates - a generalization
of the Cartesian implementation of Wiegelmann (2004). Efforts to further refine
the method are discussed in Tadesse, Wiegelmann, and Inhester (2009) while
a further generalization into a magnetohydrostatic nonlinear force-free solution
is described by Wiegelmann et al. (2007) and Ruan et al. (2008). These op-
timization efforts, however, generally require the vector magnetic field on the
photospheric boundary. We hereby propose an alternative approach reaching a
nonlinear force-free magnetostatic solution by only using the normal (radial)
field component on the boundary, as follows:

i) Start with a simple static potential magnetic field distribution such as B = 0
everywhere, or a dipolar field of any direction, etc.

ii) Evolve the vertical photospheric magnetic field by imposing a distribution
of horizontal photospheric electric fields using Faraday’s equation (eq. 2).
This distribution is chosen such that the resulting photospheric magnetic
field asymptotically (t→∞) approaches a given photospheric magnetogram
(see next section).

iii) During the evolution of the photospheric magnetic field, force-free electrody-
namic waves are injected from the photosphere into the corona. Assuming
non-reflecting, perfectly absorbing conditions at large distances, these waves
will be absorbed by the outer boundaries and will not re-enter the computa-
tional domain. The moving electric charges carried by these waves begin to
establish a nonlinear network of coronal electric currents.

iv) Gradually, as the photospheric magnetic field distribution approaches the
target, photospheric electric fields will correspondingly decrease, and as a
consequence magnetospheric electrodynamic waves, electric fields, and electric
charges will also asymptotically fade. The nonlinear network of coronal electric
currents, however, will survive.

v) When electric fields vanish everywhere, we relax to a force-free configuration
that closely matches the given photospheric boundary condition.

At this initial stage we cannot claim that our solution is representative of the
actual global coronal field. In fact, and as argued above, our solution depends on
the initial condition and on the course followed to reproduce the given boundary
condition (see, however, footnote 1). To achieve a physically meaningful equi-
librium solution we need to apply additional physical arguments that will be
the subject of a future publication. This work simply lays out the details of
the methodology and presents a few characteristic test cases. Notice that our
methodology does not apply in studying the dynamical evolution of the solar
corona between successive photospheric configurations (the characteristic speed
of propagation of information in the solar corona, the Alfvèn speed, is on the
order of 1,000 km/sec, whereas the characteristic speed of propagation of infor-
mation in our electrodynamic ‘corona’, the speed of light, is ∼ 300 times faster).
It does apply, though, in determining the equilibrium coronal configuration.

SOLA: Solar_Field_Reconstruction_SoPh.tex; 29 July 2010; 16:06; p. 4
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Global Solar Magnetic Field

In § 2 we present our numerical implementation of a photospheric electric field
distribution which guarantees that the distribution of the radial photospheric
magnetic field component will asymptotically approach that of a given solar
magnetogram. In § 3 we follow the electrodynamic response of the corona under
the action of the above photospheric electric field distribution, and present some
representative solutions for various initial conditions. We also present the various
quantities used to monitor the course toward equilibrium. Our conclusions are
summarized and discussed in § 4.

2. The photospheric magnetic field

Let us first assume a local 2D staggered cartesian grid (x, y) of size element
δ in the photosphere, with normal magnetic field Bz defined at the center of
each cell and tangential electric fields Ex, Ey defined on the corresponding cells’
edges, as shown in Fig. 1a. Each cell is characterized by a vector position (i, j).
In such staggered mesh, total magnetic flux is identically conserved when we
evolve magnetic fields through Faraday’s equation.

At t = 0, we populate our 2D grid with a particular force-free magnetostatic
field configuration Bz(i, j; t = 0) that can be anything (i.e., zero, dipole-like
of any direction and strength, quadrupole-like, etc.). Our aim is to impose a
particular horizontal electric field distribution that will asymptotically evolve
Bz toward a target magnetic field configuration BT (i, j). We chose the following
procedure: given the photospheric magnetic field distribution Bz(i, j; t) at each
time step t, we scan the full photospheric grid (i, j), and at each cell position we
add four electric field components at the four edges of the cell such that

Ex(i, j; t) → Ex(i, j; t)− f [BT (i, j)−Bz(i, j; t)] ,

Ey(i, j; t) → Ey(i, j; t) + f [BT (i, j)−Bz(i, j; t)] ,

Ex(i, j + 1; t) → Ex(i, j + 1; t) + f [BT (i, j)−Bz(i, j; t)] ,

Ey(i + 1, j; t) → Ey(i + 1, j; t)− f [BT (i, j)−Bz(i, j; t)] , (10)

as shown in Fig. 1a. Here f is a free positive numerical factor used to adjust
the rate of convergence. We chose f = 0.5, as convergence becomes numerically
unstable for f > 0.5 and too slow for f < 0.5. At each time step t, we start
with Ex(i, j; t) = Ey(i, j; t) = 0 everywhere, and then scan the 2D grid and
update electric fields according to eqs. (10). In the first cell where the algorithm
is applied, Faraday’s equation (eq. 2) can be written in a first-order discretized
form as follows:

∂Bz(i, j; t)
∂t

=
4cf [BT (i, j)−Bz(i, j; t)]

δ
. (11)

If we only had one computational grid-cell, this equation would be integrated
numerically to obtain the asymptotic solution Bz(i, j; t→∞) = BT (i, j). When
the algorithm is applied sequentially to the full horizontal grid, electric fields on
edges that correspond to neighboring cells will be updated twice as the algorithm
is applied in both cells. In the sketch of Fig. 1b-f, one can see how the electric
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RESULTS

• Numerical runs:
• Cartesian staggered grid (resolution: 2o x 2o or 25 x 25 Mm2)

• Integration method: FDTD, 3rd order Runge-Kutta

• Perfectly absorbing non-reflecting outer boundary (PML)

• Duration: 24 hours for 10,000 time integration steps

• Test case: `Halloween 2003’ period
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PROSPECTS FOR THE FUTURE

• Study localized active regions:
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PROSPECTS FOR THE FUTURE

• Magnetic Helicity: H =

�

V
A ·B dV

B = ∇×A

∂B

∂t
= −c∇×E

∂A

∂t
= −cE



PROSPECTS FOR THE FUTURE

• Numerical code improvements:

• Rigorous testing

• Proper LOS MF deprojection

• Spherical coordinates

• Outer boundary conditions: radial MF

• Parallelization (MPI)

• Visualization




