Two cases of atmospheric escape in the Solar System: Titan and Earth

Iannis Dandouras

Institut de Recherche en Astrophysique et Planétologie Université de Toulouse / CNRS, Toulouse, France

Thanks for contributions to the Cassini / MIMI Team and to the Cluster / CIS Team

Special thanks to the organisers of the 10th Hellenic Astronomical Conference

10th Hellenic Astronomical Conference, Ioannina, September 2011

OUTLINE

 Introduction on atmospheric escape and on the exospheres
 Part 1: the case of Titan
 Part 2: the case of the Earth

INTRODUCTION

Escape into space of the constituents of a planetary upper atmosphere can occur :

- in the form of neutral gas :
 - thermal escape
 - (or Jeans escape)
 - non-thermal escape :
 - sputtering

- photochemical production of fast neutrals
- ionisation and pick-up, …
- in the form of plasma.

The long-term stability of an atmosphere results from the balance between **source** and **escape rates** (+ eventual sequestration in the ground).

Exosphere (or corona): the uppermost part of an atmosphere, where collisions between particles are negligible

Particle trajectories there can be:

- 1) ballistic
- 2) escaping
- 3) coming from outside
- 4) satellite orbits
- 5) in "transit"

Chamberlain [1963] modelling of an exosphere:

 Definition of a distribution function at the exobase: critical level h_c, temperature T_c and densities N_c
 Altitude profile of the distribution function by using the Liouville equation:

 $N(r) = N_C e^{-(\lambda_C - \lambda)} \zeta(\lambda)$

 $\zeta(\lambda)$: partition function, $\lambda = G M M / k T_C r$

External limit of an exosphere : limit of the influence of the gravitational field (Hill sphere)

By imaging :
 e.g. Lyman-α imaging of the H component

Credit : NASA

By imaging :

e.g. Lyman $-\alpha$ imaging of the H component

 By direct particle detection : *Ion and Neutral Mass Spectrometry*

Credit : INMS Team

By imaging :

e.g. Lyman $-\alpha$ imaging of the H component

 By direct particle detection : *Ion and Neutral Mass Spectrometry* Cassini INMS BepiColombo STROFIO

Credit : INMS Team

By imaging :
 e.g. Lyman-α imaging of the H component

By in-situ particle detection : Ion and Neutral Mass Spectrometry

Through its interaction with the Magnetosphere : Energetic Neutral Atom imaging

By imaging :
 e.g. Lyman-α imaging of the H component

By in-situ particle detection : Ion and Neutral Mass Spectrometry

Through its interaction with the Magnetosphere : Energetic Neutral Atom imaging Cassini MIMI BepiColombo ELENA

Exospheric Imaging: ENA (Energetic Neutral Atoms) production principle

 $j_{FNA}(E) = \Sigma_k \sigma_{ik}(E) \int j_i(E) n_k(l) dl$

- $j_{ENA}(E)$: Energetic Neutral Atoms (ENA) Flux
- $j_i(E)$: Ion Flux (*i* species)
- $n_k(l)$: Exospheric Density (k species)
- $\sigma_{ik}(E)$: Charge Exchange Cross-Section between Ions *i* and

Part 1 :

Titan

Titan atmospheric interactions

97-8422

MIMI (<u>Magnetospheric Imaging Instrument</u>) onboard Cassini P.I. : S.M. Krimigis, APL / JHU

• INCA

Ion and <u>N</u>eutral <u>Ca</u>mera, 90°x120° FOV ~3 *keV* - 3 MeV ions and neutrals

• CHEMS

<u>Charge-Energy-Mass</u> Spectrometer

3 - 220 keV ions

• LEMMS

<u>Low Energy Magnetospheric</u> <u>Measurement System</u>

30 keV - 160 MeV ions 15 keV - 5 MeV electrons

Titan Simulations: a few years ago...

Dandouras and Amsif, Planet. Sp. Sci., 1999

Titan ENA Observation by MIMI-INCA : Ta Flyby (24 OCT 2004)

Titan exosphere model : 1st step

Development of a Titan exosphere model: thermal equilibrium assumed (1st approach)

- Profiles in thermal equilibrium : Chamberlain approach (Maxwellian distribution at the exobase)
- Exobase altitude ($Z_c = 1425$ km) and temperature ($T_c = 149$ K) from INMS results *courtesy INMS team* (see next slide)
- Exobase densities from
 D. Toublanc atmospheric model for the major species

 (new version consistent with latest data and Vervack model)

Planet. Space Sci., 2007

However: evidence for non thermal escape

Energy input from Saturn's magnetosphere and from Solar UV radiation can drive several non-thermal mechanisms in Titan's upper atmosphere.

Non thermal escape anticipated by :

- ➢ Ip [1992] : anticipated nitrogen torus (but never observed later);
- Lammer and Bauer [1991] and Shematovitch et al. [2003] : dissociative mechanisms for N₂; production of pick-up ions;
- Lammer and Bauer [1993] : sputtering;
- Lammer et al. [1998] and Cravens et al. [1997] : chemical and photochemical production of fast neutrals (N and N₂), ...

INMS data evidence of non thermal escape

The <u>best fit of INMS data</u>, below 2000 km altitude for N_2/CH_4 : Ta/Tb/T₅, is <u>not by thermal profiles</u>, but for <u>kappa distributions</u>: *De la Haye et al.*, 2007

De la Haye et al., J. Geophys. Res., 2007

Exosphere fit with a Kappa distribution

- <u>Kappa distributions</u> are commonly used for plasmas, to take into account non thermal populations.
- Introduced by Vasyliunas (1968) for the Earth's plasma sheet.
- Why not use them for exospheres, which interact with such plasmas and where there is no thermalisation ?

$$f_{\kappa}(r,v) = \frac{n(r)\Gamma(\kappa+1)}{\kappa^{3/2}\pi^{3/2}\omega_0^3\Gamma(\kappa-1/2)} \left(1 + \frac{v^2}{\kappa\omega_0^2}\right)^{-\kappa-1}$$

$$\omega_0^2 = \frac{2kT}{m} \frac{\kappa - 3/2}{\kappa}$$

$$\Gamma(\kappa) = \int_0^{\infty} e^{-t}t^{\kappa-1}dt$$

$$\kappa \Rightarrow \infty$$
Maxwellian when $\kappa \Rightarrow \infty$

Titan exosphere model : 2nd step a non thermal model

- Use of the best fit parameters determined by INMS for the lower exosphere to develop non thermal profiles for the extended exosphere
 - Use of the *Kim* [1991] formalism for propagating upwards the distribution function
- Large variability between flybys (even between ingress/egress)
- Calculation of an averaged exosphere model (over Ta/Tb/T5)
 and fitted with a kappa distribution at exobase for N, N₂, CH₄
 kappa ≈ 12 13
- Maxwellian distribution at exobase for H, H₂

Average non-thermal Titan exosphere model: Ta, Tb, T5

Non thermal exosphere : escape rates

Titan atmosphere

Non thermal exosphere : escape rates

$$F_c = \frac{1}{4} \int_{E_{esc}}^{\infty} \phi_{exo}(E) \sqrt{\frac{2E}{m}} dE$$

For N₂ and CH₄, non-thermal escape rates: $10^4 \text{ cm}^{-2} \text{ s}^{-1}$ which for the total spherical shell gives 2 x 10^{22} s^{-1} \rightarrow emptying the Titan atmosphere in ~ 10^{12} years For H and H₂, thermal (Jeans) escape rates:

1.9 and 3.9 × 10²⁷ s⁻¹

Note: Johnson (2006): 4 x 10²⁵ N s⁻¹, equivalent for CH₄

Titan upper atmosphere energy sources

Energy Source	Energy Flux (erg/cm ² /s)	Global Input (Watts) ⁴	Comments
Plasma Protons	1.6e-4	3.4e7	Magnetized
Plasma Electrons	1.6e-4	3.4e7	Magnetized
Plasma Heavy Ions	1.5e-3	3.2e8	Unmagnetized
Energetic Ions	5.0e-4 to 1.0e-2	1.05e8 to 2.0e9	$27 < E_P < 255 \text{ keV}^1$
Energetic Electrons	2.0e-4	4.0e7	$28 < E_e < 533 \text{ keV}^{1,2}$
UV airglow	1.6e-3	3.5e8	Altitude $\sim 1300 \text{ km}^3$
UV ionization	1.6e-4	3.4e7	Altitude $\sim 1300 \text{ km}^3$
Ohmic Heating			Not yet known
GCR	1.6e-4 to 2.7e-3	3.2e7 to 5.4e8	Integrated Flux
Dust	1.8e-3	1.8e8	Interplanetary Dust

Sittler et al., "Titan from Cassini-Huygens" book., 2009

Energetic proton and oxygen ion precipitation, from Saturn's magnetosphere, can be the most important energy source for Titan's upper atmosphere:

- Energy deposition, sputtering
- Ionisation
- Charge exchange with exosphere and ENA production
- Ionospheric chemistry

Ion / ENA absorption mechanisms: Collisions with neutrals

- Limit between optically thick and optically thin ~1500-1550 km altitude (depends on energy, from 20 to 50 keV, and on cross sections used)
- => The collisions with neutrals are the main loss for H ENAs, implying a lower limit for ENA emission below 1550 km altitude

Thermalisation of ENAs

~30 eV "lost" in each charge-exchange collision.
 >Limit of ENA emissions: ~1000 km

Titan ENA absorption in the lower exosphere / thermosphere

- > Collisions with neutrals is the dominant mechanism.
- > Exosphere optically thin to ENAs above ~1500 km.
- Strong absorption of ENAs / limit of emissions below 1000 km altitude.
- It is at these altitudes also, below ~1000 km, that energetic protons and oxygen ions from Saturn's magnetosphere precipitating into Titan's atmosphere deposit their energy, ionise and drive ionospheric chemistry [Cravens et al., 2008].

Titan's extended exosphere: H₂ Max detectable extent: ~50 000 km (Hill sphere)

1 / r² law characterises:
> either an escaping population
> or a satellite population
> whereas a ballistic population
would follow an 1 / r^{5/2} law

- IONS
- 24-55 keV protons
- Parametric model
- Homogenous around Titan
 [Dialynas et al., 2009]
- NEUTRAL GAS
 - TITAN: H₂ 1/r²
 - T_{exo} =152.5, n_{exo} =1.302 x 10⁶ cm⁻³

Part 2 :

The Earth

Atmospheric escape from Earth:

Ostgaard et al., 2003

A: The *exosphere* Extremely slow escape

Atmospheric escape from Earth:

B: The *high-latitude ionosphere* ~10²⁶ ions s⁻¹

Atmospheric escape from Earth:

C: The *Plasmasphere*

Torus of cold and dense plasma (~1 eV)

The plasma region above the ionosphere on such closed magnetic field lines is the **plasmasphere**.

- Plasmapause corresponds to the Zero-parallel force surface (gravitational + centrifugal force)
- Enhancements of the convection electric field move inward this corotation / convection boundary ("last closed equipotential"), causing erosion of the outer plasmasphere
- Formerly corotating outer flux tubes are carried away in the newly strengthened convection field
- The plasmapause becomes closer to the Earth

Lemaire, 1974, 1999, 2001

Are plasmaspheric plumes the only mode for plasmaspheric material release to the magnetosphere?

- Plasmaspheric plumes are associated to active periods: change of the electric field.
- In 1992 Lemaire and Schunk proposed the existence of a plasmaspheric wind, steadily transporting cold plasmaspheric plasma outwards
 across the geomagnetic field lines, even during prolonged periods of quiet geomagnetic conditions
 - [J. Atmos. Sol.-Terr. Phys. 54, 467-477, 1992].

Plasmaspheric Wind: background

- This wind is expected to be a slow radial flow pattern, providing a continual loss of plasma from the plasmasphere, (for all local times and for *L* > ~2), similar to that of the subsonic expansion of the equatorial solar corona
- The existence of this wind has been proposed on a **theoretical basis**: it is considered as the **result from a plasma interchange motion** driven by an imbalance between gravitational, centrifugal and pressure gradient forces:

André and Lemaire, J. Atmos. Sol.-Terr. Phys. 68, 213-227 (2006).

Plasmaspheric Wind: background

- Indirect evidence suggesting the presence of a plasmaspheric wind has been provided in the past from :
 - the plasmasphere refilling timing,

indicating a a continuous plasma leak from the plasmasphere [Lemaire and Shunk, 1992; Yoshikawa et al., 2003]

 the <u>smooth density transitions</u> from the plasmasphere to the subauroral region, observed during quiet conditions and at various magnetic local times [Tu et al., 2007].

• **Direct detection** of this wind has, however, **eluded observation** in the past.

Existence of a Plasmaspheric Wind: What Cluster Ion Observations can tell us?

CIS Cluster Ion Spectrometry

spacecraft potential EFW data thanks to the EFW team and the CAA

CIS / CODIF data : CIS team

Search for a Plasmaspheric Wind: Selection of angular portions of the ion distribution function

Selection of angular portions of the ion distribution function to search for a Plasmaspheric Wind

2

Search for Plasmaspheric Wind: comparison of the two partial (in azimuth) distribution functions

Dandouras, COSPAR, 2010

Search for Plasmaspheric Wind: comparison of the two partial (in azimuth) distribution functions CIS-CODIF SC 3 04/Jul/2001 12:15:00. CIS-CODIF 04/Jul/2001 12:15:00. SC 3 10¹² 10^{12} lons Ŧ 03456 ¢121314 H+ «going outside» 10^{11} 10¹¹ø121314 lons 10¹⁰-9234567 «going outside» 10¹⁰lons fdist (sec3/km5) 'dist (sec3/km5) «coming inside» 10⁹ 10⁹ lons «coming inside» He H *θ*3456 *φ*456 H+ 108. 10⁸ -¢456

10 E(eV) H+

100

107

10⁶

107 He⁺ 10⁶ 10 E(eV)

8234567

100

Dusk-side moderately disturbed-time event

Kp = 3-

Comparison of the two partial (in azimuth) distribution functions

Analysed Plasmaspheric Wind observation events: Distribution in the equatorial plane

Plasmaspheric Wind: Contribution to the Magnetosphere

Considering:

- V_plasmaspheric-wind \approx 1.4 km s⁻¹ (from the distribution functions, at 4 R_E)
- Plasmasmaspheric density $\approx 100 \text{ cm}^{-3}$ (at 4 R_E, typical values from WHISPER)
- Escape over half a sphere

We get :

~5.6 x 10²⁶ ions s⁻¹ continuously escaping from the Plasmasphere and contributing to the Magnetosphere

For comparison :

- the solar wind source is ~10²⁷ ions s⁻¹
 - the high-latitude ionospheric source is ~10²⁶ ions s⁻¹ [*Moore et al.,* 2005]

Earth's Plasmasphere: Conclusions

□ The distribution functions of the H⁺ and He⁺ populations, close to the equatorial plane and within the main plasmasphere, at the Cluster perigee altitudes ($R \approx 4 \text{ R}_{\text{E}}$), clearly show:

➤The existence of a Plasmaspheric Wind, steadily transporting cold plasma outwards, across the geomagnetic field lines.

□ This Plasmaspheric Wind has been systematically observed:

➢For all the examined quiet-conditions or moderately active conditions events.

≻In all MLT sectors.

From $L \approx 2.7$ to the outer plasmasphere ($L \approx 4.0 - 4.5$)

□ The Plasmaspheric Wind **can provide a substantial contribution**

to the Magnetospheric populations.

□ Similar winds should be observed also on other planets, or astrophysical objects, quickly rotating and having a magnetic field.

Ευχαριστω!