Multi-wavelength observations of oscillatory phenomena in a solar network region and their relation to the magnetic field

<u>I. Kontogiannis ^{1,2}</u>, G. Tsiropoula¹ & K. Tziotziou^{1,3}

⁽¹⁾ Institute for Space Applications and Remote Sensing, National Observatory of Athens, Greece
 ⁽²⁾ Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, Greece
 ⁽³⁾ Research Center of Astronomy and Applied Mathematics, Academy of Athens, Greece

Outline

- 1. Introduction Motivation
- 2. Observations Overview Quiet Sun
- 3. Methods Analysis
- 4. Results:
 - 4.1. Fine structure and chromospheric oscillatory power
 - 4.2. The magnetic field of the quiet Sun and the position of the magnetic canopy
 - 4.3. Oscillations and the chromospheric magnetic field
- 5. Summary and future work

Expansion of magnetic flux tubes "Wine glass" geometry (Gabriel 1976) Magnetic canopy

Connection between magnetic elements of network and IN \rightarrow closed loops (Dowdy et al. 1986)

Chromospheric mottles (dark elongated structures) Stem from the network

A few theoretical aspects

Plasma- β parameter: $P_{gas}/P_{magnetic}$

Magnetic canopy: where $\beta \sim 1$ or $V_{sound} = V_{Alfven}$

β > 1 : P_{gas} dominates (e.g. photosphere, below canopy)

β < 1 : P_{mag} dominates (chromosphere, above canopy)

Acoustic waves → Interaction with the magnetic field → Mode conversion, refraction – reflection (various MHD modes)

Acoustic oscillations

p- modes : oscillations of the sun as a whole, acoustic oscillations, pressure as a restoring force Atmosphere: f > 5.5 mHz (P < 3 min) → acoustic waves f < ~5.5 mHz (P > 3 min) → evanescent, (atmospheric layers oscillate in phase)

Acoustic oscillations

Photosphere: 5 min oscillations dominate Chromosphere: 3 min oscillations dominate

In chromospheric mottles 5 min is prominent (Tziotziou et al. 2004, Tsiropoula et al. 2009)

"p – mode leakage" (De Pontieu etal. 2004) and magnetoacoustic portals (Jefferies etal. 2006):

The presence of inclined magnetic fields modifies the acoustic cut-off allowing lower frequency (higher period) waves to travel upwards and be detected at chromospheric heights in mottles (inclined magnetic flux tubes)

Interaction with the magnetic field

In active regions

"Power halos" (Braun et al. 1992) \rightarrow Increased high frequency oscillatory power around active regions.

power deficits : Decreased p-mode power over and around active regions

These results where extended to quiet sun

"Magnetic shadows" → decreased high frequency power and intensity over and around the chromospheric network (*Judge etal 2001, Vecchio et al. 2007*).

"Power halos" \rightarrow increased high frequency power around the network (*Krijger etal. 2001*).

These findings were linked with the network magnetic field and the position of the magnetic canopy (*McIntosh et al. 2003, Muglach 2005*).

30 40

1. Observations

Dutch Open Telescope (DOT): Hα (5 positions along profile) **Call H – G band filtergrams** 1550, 1600, 1700 Å UV continua **TRACE :** high resolution magnetograms SOHO/MDI: **HINODE/SP**: vector magnetograms

arc sec

30 40

2. Observations

Wavelengt h (Å)	Height of Formation (Km)
Ha 6563	1800(1)
Ha ± 0.35	>1000(1)
Ha ± 0.7	200 - 500(1)
CaII H 3968	<i>1600</i> ⁽¹⁾
G-Band 4305	10-100
1550	2000 ^{(2) *}
1600	~550 ⁽³⁾
1700	~450 ^(2,3)
NiI 6768	200(2)

10th Hellenic Astronomical Conference, Ioannina September 2011

(1) Leenaarts et al. 2006 (2) Judge et al. 2001 (3) McAteer et al. 2004

3. Methods - Analysis

- •Wavelet analysis (Torrence & Compo 1998) on each pixel of the FOV
- •Averaged Spectra of network and IN

•2-D power maps in 3 frequency bands

Power distribution on the FOV

Suppression of 3 min power at chromospheric Heights (Judge et al. 2001)

Photosphere: Enhanced 3 min power over supergranular lanes (Hoekzema et al. 1998)

Focus on $H\alpha$ DOT's observations

0.35 Å forms at chromosphere, (up to 1600 km)

0.70 Å forms at photosphere (up to the temperature minimum)

DS 0.35 Å

3 min: suppression up to 10"-12" from the network (typical mottle dimension) 5 min: suppression but with increased power inside the rosette Increased 7 min power **DS 0.7 Å**

Increased power at all bands. Fibrilar structure of the power at the rosette

Connection with mottles:

- 1. Extent of shadows-halos ~ mottles typical extent on disk (10"-12")
- 2. Fibrilar structure on the power maps
- Scatter diagrams a good correlation between increased power and increased absorption (at the photosphere) – decreased power and absorption (at the chromosphere).

What is the role of the magnetic field?

Photospheric magnetic field :

MDI: LOS mag.field
(from the Nil 6767.8 Å
(Disk center → Bz

Hinode Spectropolarimeter (SOT/SP): Vector magnetogram (HAO CSAC team M-E inversion of Fel 6301.5 Å and 6302.5 Å

Stokes spectra

MDI: lower values for the photospheric magnetic field (up to 4 times) reasonable (lower resolution, lower filling factor, different type of instrument)

MDI and SOT\SP magnetograms **potential field extrapolation** gives the vector of B at the chromosphere *(Schmidt 1964)*

 $B_{LOS} = B_z$ and $B_{TRANS} = \sqrt{B_x^2 + B_y^2}$ $\theta = \arctan(B_{TRANS}/B_{LOS})$

9 9 140 **FRANS Magnetic field** OS Mognetic Field 120 30 100 80 20 60 40 10 20 0 2 4 6 8 10 12 14 0 2 6 8 10 12 14 80 Inclination (Deg) 60 **₫**50] 40 20 0 2 4 6 8 10 12 14 8 10 12 14 0 2 6 Distance (arcsec) Distance (arcsec)

+ VAL C model (Vernazza etal. 1981)

 $\beta = Pgas/Pmag$

Same magnetic configuration from both instruments.

Very good agreement between Potential field lines – inferred magnetic field by Hα.

chromospheric magnetic field not potential though!

A minimum energy configuration that matches well with an average state

 $\beta = 1$ defines the canopy height where magnetic forces start to gain control on plasma dynamics

Lower MDI values \rightarrow canopy situated higher (~550 km)

4.3. Chromospheric oscillations - magnetic field

4.3. Chromospheric oscillations - magnetic field

At DS ±0.35 Å height:

Power deficit where β<1.

5 – 7 min power peaks at ~ 60° (p-mode leakage).

Canopy height > 1500 km, power at IN values.

4.3. Chromospheric oscillations - magnetic field

At DS ±0.70 Å height:

Enhanced power at all bands.

5 – 7 min power peaks at ~ 60° (p-mode leakage).

Canopy height > 1000 km, power at IN values.

5. Summary and conclusions – future work

The magnetic field affects the oscillatory power distribution:

✓ Canopy height < HOF → magnetic shadow (high frequency power deficit). ✓ Canopy height > HOF → power halo around the network due to reflection (high frequency power enhancement). ✓ p-mode leakage and/or refraction of waves → low frequency power enhancement.

Mottles:

√Inclined flux tubes - loci of enhancement or further suppression of oscillatory power

✓Canopy structures that outline the chromospheric magnetic field.
 ✓Whole or parts of them found below 1600 km.

Future work:

Phase difference analysis – magnetic field and wave propagation to provide more evidence.

Thank you!