The Genesis of an EUV Wave

Spiros Patsourakos University of Ioannina Greece

A.Vourlidas, NRL, USA

O. Olmedo, NRC@NRL, USA

Overview & Rationalle

EUV waves (Moses et al. 1998;Thompson et al. 1999) Propagating intensity fronts @ 200-300 km/s Connection with CMEs (Biesecker et al 2002)

What drives these phenomena?

1997/05/12 00:12

EUV Waves & early CMEs

Waves are first seen in the flanks of erupting cavities

The Genesis of a CME-EUV Wave @ 12-s cadence

13-June-2010 ----- separate driver & wave Base-ratio movie Slow rise of loops \rightarrow Bubble formation \rightarrow Strong lateral expansion \rightarrow wave

Without AIA we would have missed entire phases of the evolution!!!

Cavity Measurements

Fit circles to the cavity \rightarrow height & radius

Cavity Kinematics

Wave Kinematics @ 0.17 Rs

Map base-ratio images into polar coordinates

Extract time-position angle plot at r=0.17 Rs (~ height of EUV waves from triangulations)

Select points along the wave

CME cavity

Wave detaches from CME cavity

time

Wave Kinematics

Fit a 2nd order polynomial to Time-PA measurements

Speed decreases from > 400 km/s to 200 km/s (~ fast-mode speed in quiet Sun)

driven wave (weak shock) becomes freely-propagating

A First-principles Model of Large-Scale Coronal Waves (Temmer et al. 2009)

Expansion of source: height(t) & radius(t) drives a wave

Assume an Alfven speed

Wave amplitude evolution

$$f(d) = e^{-d/p}$$

Ground Track of Wave (time-distance)

Wave Ground Tracks

Solid lines: predicted r for various Alfven speeds

Boxes: wave r measurements

Propagation in low Alfven speed environment consistent w/ measurements → CME flanks could generate the wave

The Same Pattern is seen in Other Impulsive Events

Date	EUV Wave	SXR Flare
06/03/2007	0	C 5.3
01/02/2008	0	C 1.3
03/25/2008	0	M 1.7
02/13/2009	0	B 2.3
12/16/2009	(weak)	C 5.3
01/17/2010	0	(occulted)
06/13/2010	0	M 1.0
11/03/2010	0	C 3.0
02/11/2011	0	< B 3
02/15/2011	0	X 2.2
02/24/2011	0	M 3.5
03/08/2011	0	M 1.5

High-res & cadence EUV observations of the genesis of CMEs and EUV waves shows that they tightly connected

Low-lying sets of loops \rightarrow cavity \rightarrow lateral expansion drives the wave

First principles data-driven model of EUV wave formation Based on observations of the both the CME driver and wave shows that CME flanks expansion is more probably driving the wave

Flux rope – Cavity Separation

Red: 171 A ~ 0.8 MK Green: 131 A ~ 10 MK

Physical Mechanisms: Waves, Pseudo-waves & Hybrids

Fast mode wave:e.g. Thompson et al. 1998, Wang 2000, Ofman & Thompson 2002 Linker et al. 2008, Schmidt & Ofman 2010

Expanding flux rope (current & compression shells)

e.g. Delannee 1999, Chen e al. 2005,Delannée et al. 2008, 2010, Schrijver et al. 2011

Reconnection fronts: e.g. Attrill et al. 2007

Physical Mechanisms: Waves, Pseudo-waves & Hybrids

Hybrid (wave& pseudo-wave): e.g.Zhukov and Auchere 2004, Chen et al. 2005, Cohen et al. 2009 Poemel et al. 2010 Downs et al. 2011

Reconciling Waves and Pseudo-Waves

Diffuse shock front track: decceleration (true wave) Bubble & bubble "termination" → pseudo-wave