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A thin layer above the photosphere where photons created deep at the
radiation zone after passing through the convection zone finally escape free towards
the upper atmospheric layers
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
ic network

* photosheric granules are the top
of convective flows. They have a
typical length of 2 Mm and lifetime

* photospheric granulation leads to
8§ the formation of the chromosperic
Y network
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
spheric network
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
odes

Turbulence in the convection zone can create
acoustic power, i.e. waves that travel towards the
photosphere.

P-mode or acoustic waves have pressure as their
restoring force, hence the name "p-mode". Their
dynamics are determined by the variation of the
speed of sound inside the sun.

P-mode oscillations have frequencies > 1 mHz
10000 f—~———rrr——————————————————— aNd are very strong in the 2-4 mHz range, where
: | they are often referred to as "5-minute
oscillations” (~3.33 mHz)

1000

P-modes are evanescent waves and the general
belief was that can not propagate to higher
atmospheric layers.

However this is not absolutely true!
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Chromospheric magnetic fields:
»more diffuse and weaker than
the photospheric ones
»shows less internetwork structure
»shows more extensive regions of
horizontal canopy fields which are

closely related to chromospheric
fibrils

KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
magnetic fields

How do we observe them?

Ca H and K lines: good polarization sensitivity of their emission
cores

HB wings: significantly blended with photospheric lines

Mg | 5173 and 5183 A: well-behaved signals with 5173 giving a
slightly

stronger response

D2: The red wing of the core contaminated by a water vapor line
D1: Good for ground observations

Ha: rather weak polarization signal even in the steep wings
adjacent to its core; suffers from varying emission in the core
which produces an opposites signed polarization signal; blended
with a photospheric line in its red wing.

Ca I 8662 A: seriously blended with a photospheric line

Ca 11 8498 and 8542 A: somewhat similar with the latter being
stronger, less affected by blends and having a more symmetric
core profile. The cores of both lines frequently show emission
that produces complicated Stokes profiles

10830 A multiplet : has the advantage of being formed almost
entirely in the chromosphere but it varies greatly in strength
from place to place

Harvey, 2009, ASPC 405, 157
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
netic fields

The magnetic flux of the quiet Sun internetwork

»>the quiet IN regions are pervaded by horizontal magnetic flux
»transverse flux is almost x 5 the longitudinal flux

»The vertical fields are concentrated in the intergranular lanes

»the stronger horizontal fields are somewhat separated spatially from the
vertical fields and mostly occur at the edges of the bright granules
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
agnetic fields

Small-scale magnetic flux emergence in quiet Sun

Two photospheric lines Fe 1 630.25 nm and Fe | 630.15 nm with SP of SOT
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J. Zhang, S. H. Yang & C. L. Jin
Research in Astron. Astrophys. 2009 Vol. 9 No. 8, 921 - 932
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS

Emergence of vertical magnetic fields above quiet sun granules
with typical lifetime of the order of 20 min

At=0 min 2 min 4 min 6 min 8 min 10 min 12 min 14 min
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
gnetic fields

Emergence of small-scale magnetic loops

At(s)— continuum intensity at 630 nm
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
gnetic fields

Magnetic elements in internetwork

Fe I magnetogram G-band intensity Ca II H intensity
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CallH

Fe | Magnetogram |

Sample mask of magnetic elements:
positive flux are blue, negative flux are red

DE WIIN ET AL. THe ASTROPHYSICAL JOURNAL, 684:1469-1476, 2008 September 10
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
agnetic fields

Magnetic elements in internetwork

Histograms of the velocity of IMEs toward the network
boundary measured over 35 s (left) and 597 s (right).
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The apparent flows indicate a bias of about 0.2 km/s toward the network boundary.
Elements of negative polarity show a higher bias than elements of positive polarity, perhaps as
a result of the dominant positive polarity of the network in the field of view or because of
increased mobility due to their smaller size.

DE WIIN ET AL. THe ASTROPHYSICAL JOURNAL, 684:1469-1476, 2008 September 10
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
gnetic fields

Supergranulation and network Formation

Using floating corks advected by velocity fields inferred from photometry
measurements, Roudier et al. showed that long-living Trees of Fragmenting Granules play
a crucial role in the advection of small-scale magnetic fields and in the build-up
of the magnetic network

Corks and longitudinal magnetic field location after 24h (left) and 48h (right)
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Roudier etal., 2009, A&A 495, 945
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KEY ELEMENTS OF CHROMOSPHERIC PHYSICS
network

31 hours of SOHO/MDI magnetograms
H. Potts (Glasgow University, 2006)

’

Majority of observed fine scale chromospheric structures reside
at network boundaries
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THE "FINE" SOLAR CHROMOSPHERE
tructures (on-disc picture)

DOT observaions
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THE "FINE” SOLAR CHROMOSPHERE
res (on-disc picture)

Ha with CRISP@SST
Ha line core

Quiet sun features: mottles
Active region features (plages, sunspots): fibrils

In general mottles and fibrils are:
> jet-like structures
»~10000 km long
»~ 1000 km wide
» cool ~12000 K
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THE “"FINE” SOLAR CHROMOSPHERE
tures (limb picture)

Ca Il H HINODE/SOT observations

Spicules: jet-like structures seen at the limb.
Associated to mottles and fibrils
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THE "FINE” SOLAR CHROMOSPHERE
ures: dynamic jet-like flows

Ca Il H with DOT

AR 10436
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THE “"FINE” SOLAR CHROMOSPHERE
es?
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Short-lived vertical stripes and longer-lived parabolic paths

De Ponticu et al. PASJ: Publ. Astron. Soc. Japan 59, S655-5662, 2007 November 30
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THE “FINE" SOLAR CHROMOSPHERE

TRACE 1600A
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De Pontieu et al. PASJ: Publ. Astron. Soc. Japan 59, S655-5662, 2007 November 30
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THE “FINE" SOLAR CHROMOSPHERE

Hinode SOT/BF| Ca |l 3968

Type Il spicules
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* longer-lived 3-5 min
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De Pontieu et al. PASJ: Publ. Astron. Soc. Japan 59, S655-5662, 2007 November 30
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THE “FINE" SOLAR CHROMOSPHERE

rparts of Type Il spicules
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Frequency

Frequency

413 Ca ll 854.2 nm RBEs (dashed line)

THE “FINE" SOLAR CHROMOSPHERE

608 Ha RBEs (solid line)

ts of Type Il spicules
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THE “"FINE” SOLAR CHROMOSPHERE
h velocities in disc Type Il spicules?

Spatial extent, lifetime, and location of RBEs near network suggest a link to type Il
spicules, however, the magnitude of the measured Doppler velocity is significantly
lower than apparent motions seen at the limb.
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THE ASTROPHYSICAL JOURNAL, 679: L167

Time [minutes]

THE “FINE" SOLAR CHROMOSPHERE

LANGANGEN ET AL.

Monte Carlo simulations show
that the visibility on the disk of
high-velocity flows in RBEs is
limited by a combination of line-
of-sight projection and reduced
opacity in upward propelled
plasma.
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Simulations have shown that the chromospheric disc
counterparts depend on location of null point with
respect to the line height formation
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THE "FINE” SOLAR CHROMOSPHERE
ure of chromospheric “fine” physics

Intricate and poorly understood physics and dynamics
with significant impact on higher solar layers
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Assuming:

»optically thin structures laying
above the photosphere
»constant source function

Initial parameters:
e U=0

e A\,=03A

¢ Tmax= 1

¢ S =0.155+0.159x(P,-C,)/C,

FINE SCALE STRUCTURES: PHYSICAL PROPERTIES
ing physical properties with cloud model

9
An — A1 —)\13
C

Tn = Tmax'exp — AAD

TmaXI v, A)\D ’ S
that describe the observed profile

Iterative y? fitting

i.e. 300 iterations
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FINE SCALE STRUCTURES: PHYSICAL PROPERTIES
cal properties with cloud model

+ general equations
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FINE SCALE STRUCTURES: PHYSICAL PROPERTIES

sical properties with cloud model

K. Tziotziou', G. Tsiropoula’. and P. Mein®

Parameters Average values
N» 4.2 10 cm?
Nu 9.9 101 ¢m?3
Ne 6.4 10" cm-3
m 2.210% g cm?
p 22103 g em
T (for =15 km/sec) 1.0 104K
p (for £=15 km/sec) 0.24 dyn cm
L 10 Mm
d 1 Mm
VLOs 15 km/sec

A&A 402, 361-372(2003)
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G. Tsiropoula' and K. Tziotziou?
A&A 424, 279-288 (2004)
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J.M. Pasachoff et al.
Solar Phys (2009) 260: 59

12

Number of Spicules

FINE SCALE STRUCTURES: PHYSICAL PROPERTIES

ics

Diameters of H-alpha Spicules
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FINE SCALE STRUCTURES: PHYSICAL PROPERTIES
in plage: characteristics

Parabolic fibrils
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FINE SCALE STRUCTURES: CHARACTERISTICS
S

K. Tziotziou'. G. Tsiropoula’. and P. Mein?
A&A 402, 361-372(2003)
N.All, C. Bendlin?, J. Hirzberger®, . Kneer?, and J. Trujillo Bueno®s

AZA I8, 1131-1139(2004)
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FINE SCALE STRUCTURES: CHARACTERISTICS

Intensity global power spectrum

b

K. Tziotziou'*, G. Tsiropoula', and P. Mein®
A&A 423, 1133-1146 (2004)

Does it imply anything
about the driver of mottles?
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FINE SCALE STRUCTURES: CHARACTERISTICS

Intensity global power spectrum

b

K. Tziotziou'*, G. Tsiropoula', and P. Mein®
A&A 423, 1133-1146 (2004)

Line center intensity

“The Ha line-center intensity and Doppler velocity wod
variations of the dark-grain (dynamic fibril) region are ;=
the only ones showing a regular 5 min wavetrain
which is known to be produced by the p-mode pattern
but very intermittently in space and time.”
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[\ 200 400 €00 800 1000 1200 1400
Hms (wac)

Dominant period ~5min

Does it imply anything
about the driver of mottles?

Wavelet spectra of an area of mottles
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FINE SCALE STRUCTURES: CHARACTERISTICS

populations of mottles?
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FINE SCALE STRUCTURES: CHARACTERISTICS

on of magnetic field in spicules
Lopez Ariste & Casini, 2005

Trujillo Bueno et al., 2005
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»40° from vertical, aligned with spicules?

Kim et al. 2008
JKAS, 41,173

l

Hanle/Zeeman He |1 10830, VTT
»>At 2,000 km mostly 10 G
»Some spicules up to 40 G
»Orientation 35° from vertical

Observed oscillations were interpreted as MHD kink waves
propagating through a vertical thin flux tube embedded in a
uniform field environment and estimated magnetic field in

spicules is about 10-18 G for lower density limit and about
43-76 G for upper density limit
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WHAT DRIVES THEM?

mechanisms for mottles/spicules

Most possible mechanisms:

»P-mode leakage in inclined flux tubes "
(Suematsu 1990, De Pontieu et al. 2004)

»Reconnection
(Pikel’ner 1969, Tziotziou et al. 2003)

»Shocks created by pressure enhancements, wave pulses,
resonant waves as a result of granular buffeting of flux tubes | 47
(Roberts 1979, Suematsu 1982, Shibata, 1982, Hollweg 1982) /

250.00 350.00

1/5)
50.00
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WHAT DRIVES THEM?

Hypothesis: Source for spicules probably photospheric?

200

150

100

50

100 150 200

arcsec

Photosphere dominated by 5-min power (p-modes)
However, p-modes are evanescent...
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WHAT DRIVES THEM?
akage

»Big question: How do evanescent 5-min photospheric
oscillations leak into the atmosphere?

>Answer: Acoustic cutoff period ~1/cos@

»Suematsu (1990) proposed the formation of
chromospheric fine structure from leaked p-modes in
inclined structures

>De Pontieu etal. 2004 performed modeling using MDI
driven 1D HD
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WHAT DRIVES THEM?
age

Modeling using MDI driven 1D HD

Vertical Velocity 8=40°

ghted vertical| velocity
)

» Active region fibrils
s » Periodic spicules from p-mode
Dehromotbharic) g leakage on inclined or twisted flux
o tubes
» Most spicules not periodic
» 2D or 3D simulations with proper

coronal

shocks non-LTE radiation treatment

necessary...
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Spicule height (1,000 krn)

WHAT DRIVES THEM?

4.0F

-
-
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25E
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model prediction

£y
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time (5)
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T

‘ -
observations &

1 I l L 'l 1 L I 1 1 1 L

1 L 1

0 500

1000 1500 2000 2500

time (5)

Predicted and observed spicule occurrence agree reasonably well
Mismatch in amplitude due to varying filling factors

However:

»>obtained velocities from simulation are too small
»magnetic field boundary values are too high

»and most importantly what happens to the magnetic field
that cumulates in network boundaries?
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I WHAT DRIVES THEM?

Observational evidence

e
i
. ¢
. .‘," _
/7
Bi-directional flows

- . - . -2
K. Tziotziou'. G. Tsiropoula’. and P. Mein
A&A 402, 361-372 (2003)

Temperature enhancement

5.0x10° 1.0x10% 1.5x10% 2.0x10%
Temperature (in K)
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WHAT DRIVES THEM?

I

Squeezing of opposite
polarity fields

Reconnection of

magnetic fields

m

0

Cooling by radiation of

compressed gas and downflow

Upflows and downflows

time (min)

arc sec

-20 =10 0 10 20
Velocity (in km sec™)

Reconnection explains observed bi-directional behaviour and
provides high velocities

Probably need to incorporate both waves and reconnection!
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WHAT DRIVES THEM?
eric Alfvénic Waves

Example of transverse displacement of a spicule

0005101520250 1 2 3 0 1 2 30 1 3 3

Mm Mm Mm Mm

B. De Pontieu, et al.
Science 318, 1574 (2007)
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WHAT DRIVES THEM?

Ifvénic Waves

o
1500 >
- 4]
& 1000 S
£ c
= ~g
500 v
<L
0 0
£
-
1500 —
—— m
-, (&)
1000 7,
£ 9
500 - = - 3 j‘—;"‘ -:’4" —— : - : a§
5 Monte Carlo for-cut2 =

0 2 4 6 8 0 2 4 6 8

Mm Mm

B. De Pontieu, et al.
Science 318, 1574 (2007)
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WHAT DRIVES THEM?
eric Alfvénic Waves

Space-time cut of the CallH

14

12

10

§
: [ Observed: solid line
g L 1 | Simulated: dashed line
’ | "+"|_ _ h —
0o | I B. De Pontieu, et al.

0 200 400 600 800 1000 1200 1400 O 10 20 20 Science 318, 1574 (2007)

Transverse Displacement [km] Transverse Velocity [km/s]
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WHAT DRIVES THEM?

high-frequency Alfvén waves in spicules

Four cases of spicules modulated by high-frequency (20.02 Hz) transverse fluctuations,
suggesting to be Alfvén waves that propagate upward along the spicules with phase speed
ranges from 50 to 150 km s1. Three of the modulated spicules show clear wave-like shapes

with short wavelengths less than 8 Mm.
South

lapicute (tor ¥) Dy (%, ¥)
T I SRS R

displacement for Point—ll displacement for Point—IlI

w

+

height along the long slit [arcsec]
height along the long slit [arcsec]
(&

st X
(]
&
2f 2 =
% 20
o 1} 1
0 0 -
e : 0.2 04 0.6 08 1.0  —04-02 0.0 02 04 =03 _ 00 03 =05 0.0 03
North L S ) intensity [arbitrary unit] displacement [arcsec] X [OFCSEC] X [OI’CSEC]
East —— West
Spicule number  Wave period Phase speed Velocity amplitude  Height  Inclination
Spicule-1 48 s 75-150 kms™! 4.7kms™! 4.4 Mm 10°
Spicule-2 37s 50-117 kms™" 6.1 kms™ 5.8 Mm 20°
Spicule-3 45s 73 kms™! 18.1 kms™' 1.5 Mm 43°
Spicule-4 50 s 109-145 kms™' 20.8 kms™! 7.3 Mm 30°

J.-S. He et al. A&A 497, 525-535 (2009)
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WHAT DRIVES THEM?

agnetic fields!

Kontogiannis et al 2010 3min  5min 7 min

Ha average + Potential Field lines

arc sec

arceac

arc sec

DS Ha+0.7 A

arc sec

Next talk!

0 5 1015 2025 30 0 S5 10 15 20 25 30 0 5 10 15 20 25 30
arc sec arc sec arc sec
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ENERGY AND MASS FLOW
ow to the corona

Assuming that at any moment:
e only half of the mottles show upward motion only half of the
material flows upwards
e fraction f of the covered solar surface ~ 0.05 (4 10° structures)
e average mass density p (2.2 1013 g cm3)
e average axial velocity v, (U, = 25 km/sec)

1(1
22
Mass outflow from the solar corona: 3 10t gcm=2 s

Upward mass flux: Fpy = fpua) =7.110""gem 257!

Assuming that the remaining flux F; = 0.99xFw is falling back as EUV
observations indicate and the average mass density p,, is 6.7 101> g cm3:

= — -1 -
I)f }7f /ptr 11 km sec Observed velocity!
G. Tsiropoula and K. Tziotziou A&A 424, 279-288 (2004)
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ENERGY AND MASS FLOW
y flow to the corona

Fmag = Frad + Feond + FX +%

L A s nee
Foo = aofT\N2va(T)= ssumptions:
rad (T)Nxg(T) 2 e duration of outflow-downflow (~150s)
F _ dg e the area of each event
cond — K + .
dh * birthrate of events
e outflowing and downflowing energy

Fx = Fyn+ Fy+ Fy

Fx = %p’u?’ + (7? 1)'0 + ngCO;(B)v B2p
(77 B=g%
—
Total energy flux: 1.2 10° ergs cm?2 s’! @
% of this energy is available B=11G

for heating of corona

Hanle effect gives 10 G
~20% of needed energy flux (TTUjI"O Bueno etal., ApJ, 2005)
(3 10° ergs cm2sl)

G. Tsiropoula and K. Tziotziou A&A 424, 279-288 (2004)
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ENERGY AND MASS FLOW
he corona

Magnetic energy flux in units of 10> erg cm2 s!

Birthrate

Velocity (km/sec)

G. Tsiropoula and K. Tziotziou A&A 424, 279-288 (2004)
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ENERGY AND MASS FLOW

corona

MOORE ET AL.
THE ASTROPHYSICAL JOURNAL LETTERS, 731:L18 (Spp). 2011 April 10

INOD-LNETmal Lnergy riuxes

Type of Energy Flux and Its Carrier and/or Generator Symbol Formula Estimated Value (erg cm =2 s~1)

Magnetic-energy flux of EBs Finag Foag ~ (87)~'fgg (Bgg)* Dgg (tgs) ™! ~1 % 107
Energy flux of Alfvén waves generated by EBs Fa Fa~(x )"’Ilfp-nﬁ;g (pu)”2 (v 2B ~3 x 10°
Kinetic-energy flux of Type-II spicules generated by EBs Fiin Fiia ~ (1/2) fit pu (o) ~3 x 10°
Potential-energy flux of Type-II spicules generated by EBs Fpot Foo ~ g fu Lu pu vn ~8 x 10%
Work—energy flux of Type-I1 spicules generated by EBs Fuodk Fuok ~ fit pu vn ~1 x 10*
Total mechanical-energy flux of Alfvén waves and Type-II Fmech Fuech = Fa + Fyin + Fpot + Fuoek ~T x 108
spicules generated by EBs

“The value of ~7x10° erg cm™2 s for F, ., is comparable to the
~5x10° erg cm™? s~ needed to power the coronal heating and solar
wind in quiet regions and coronal holes”
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ENERGY AND MASS FLOW
| heating in the chromosphere?

A
| " DE PONTIEU ET AL.
isk Center View
Coronal Emission Line  ‘aowometr:Conunl Line Proflen THE ASTROPHYSICAL JOURNAL, 701:L1-L6, 2009 August 10

1(2)

Blue-Shifted
Component

Oblique/Limb View
Tall Type-li Spiculesin CallH

%o % Symmetric Coronal Line Profiles
Heated Material Heated Material
d 1
Spicules
Type-1/" : | l
Spicules Wik \
: | \ i
D C?\’D Co ™M D™ D C\/”D ER

Buffeting Convective Flows

Spectral line profiles of the coronal Fe XIV line show a deviation from a Gaussian
indicative of hot plasma flowing upward at high speeds

(a) TRACE Fe IX/X 171A (b) EIS Fe XIV 274A (c) EIS Fe XIV 274A 1(d) FeIXIV BI-R 50—|I 20krln/s

2
100

80

60

arcsec

40

20

0 20 40 60 80 0O 20 40 60 80 -100 0 100 0
arcsec arcsec km/s
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ENERGY AND MASS FLOW

eating in the chromosphere?

DE PONTIEU ET AL. 0.04 T ' | :

THE ASTROPHYSICAL JOURNAL, 701:L1-L6, 2009 August [0 § : :

2 0.033 3

Histogram of upward velocities in S
chromospheric type Il spicules (black line) as 5 0.027 :
derived from Ca Il H timeseries at the limb and E §
upflow velocities derived from subtractinga 3 0014 | -
Gaussian fit from the profile of Fe XIV264 A & | | I
(blue) and Fe XIV 274 A (green) 000 4t ——
0 50 100 150 200

Upward Velocity [km/s]

B—R asymmetry maps show strong enhancement of the blue wing

emission in the magnetic network (solid black contours)
30 48A R - 50 km/s (f) Ne VIl

. S -‘,— _“ . ’ ,'::.. .'-. .:l: ;h‘ Y » &
o TR e

10

o
Y (arcseconds)

-10
—20 2 A 2P pe Py v ] . - S
=30 -400  -300 -100 100 -500 -400  -300

X (arcseconds) X{(
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NUMERICAL SIMULATIONS OF FINE STRUCTURES
ion of Alfvén waves

MHD simulations of Alfven
wave propagation along an
open flux tube in the solar
atmosphere, generated by
photospheric granular motion

Height [Mm]

0 \ i L
-4 -2 0 2 -
Radius [Mm]

Vs [km ] log plg cm”)

is

30

25

20

= £ Time [min]

=

Height [Mm) Height [Mm]

MATSUMOTO & SHIBATA THE ASTROPHYSICAL JOURNAL, 710:1857-1867, 2010 February 20
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NUMERICAL SIMULATIONS OF FINE STRUCTURES
ation of Alfvén waves

The region between the photosphere and the

transition regi-on becomes an Alfven wave Total energy flux measured at the
resonant cawty..There are at least three . corona. The amplitude of each wave
resonant frequencies, 1, 3, and 5 mHz. If this period is fixed to 1 km/s
cavity exists the resonant periods are expected -
to be observed as spicule motion or coronal 15 F |

transverse velocity.

Period [sec]
500 250 166 125

Energy flux [10° erg cm™ s ']

Height [Mm]

S o
0 200 400 600 800
Period [sec]|

0 2 4 6 8 10
Frequency [mHz]

MATSUMOTO & SHIBATA THE ASTROPHYSICAL JOURNAL, 710:1857-1867, 2010 February 20
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NUMERICAL SIMULATIONS OF FINE STRUCTURES

tions of the transfer equation

Use given (ad-hoc) source functions, including a stratified chromosphere from which spicules
emanate with model parameters compatible with earlier studies of spicules. Spicules are

Hinode BFI Ca Il

‘Hinode BF1\Ca |l
with'\dadial filter' ) '/

R ST

Judge & Carlsson, 2010 ditance ban

B
B TG, N

o

The visibility of Ca Il spicules
down to the limb in Hinode
data seems to require that
spicule emission is Doppler
shifted relative to the
stratified atmosphere, either
by supersonic turbulent or
organized spicular motion.
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NUMERICAL SIMULATIONS OF FINE STRUCTURES
iven by magnetoacoustic shocks

Dynamic fibrils (type 1) driven by leakage of p-modes in inclined magnetic fields

Observations

z [1,000 km]

z [1,000 km)]

z [1,000 km]

100 200 300 400 500 600
0 200 400 600 800 1000 Dominant Wove Period [s]

t [s]
HANSTEEN ET AL. THE ASTROPHYSICAL JOURNAL, 647: L73-L76, 2006 August 10
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NUMERICAL SIMULATIONS OF FINE STRUCTURES

of Type | and Type Il spicules

Magnetic field geometry and Collapsing Photospheric  Chromospheric
connection to the granule energy release  energy release
photosphere of a spicule P
driven by a collapsing granule g
g g
=2, ]
~ Q.
S
o
F
~ >

8 6 7 8 9 10 11 12

t 100x[s] t 100x(s] t 100x[s]

Juan Martinez-Sykora et al, 2009, ApJ 701, 1569
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NUMERICAL SIMULATIONS OF FINE STRUCTURES
gnetic reconnection

Piston with 300 s period and 1.1 km s™!
amplitude (typical of solar granulation)

Jlll
| H - Hinode driver

8.94e+05

[ LOS velocities across slice in network
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HEGGLAND, DE PONTIEU, & HANSTEEN
THE ASTROPHYSICAL JOURNAL, 702:1-18, 2009 September 1
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Velocity [km s7')

NUMERICAL SIMULATIONS OF FINE STRUCTURES
agnetic reconnection

Transition region null points and piston driver

t = 364 s
-3.93 1 1 H
Chromospheric null points and HINODE driver
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|2 -
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HEGGLAND, DE PONTIEU, & HANSTEEN

THE ASTROPHYSICAL JOURNAL, 702:1-18, 2009 September 1
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: .)nclusions

»The solar chromospheric is an incredibly rich, dynamic and highly structured
layer with complex poorly understood physics

»Chromospheric fine structures show a large diversity of physical and dynamic
characteristics

»They are governed by flows reflecting the geometry and dynamics of the local
magnetic field and play an important role in the propagation and dissipation of
waves

>It seems that there are two distinctive populations of mottles/spicules
»Reconnection and p-mode leakage seem to be the most dominant driving
mechanisms

»Chromospheric fine structures are important for maintaining the mass and
energy budget of the solar corona

»Simulations of chromospheric fine structures are a new promising field. They
do show some of the observed characteristics, however they are still far from
the actual observed picture due to lack of detailed physics (e.g. detailed non- LTE
radiative transfer, radiative cooling etc) and high-spatial numerical resolution
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Thank you!

Special thanks to my partners in this “fine structure” journey:

Georgia Tsiropoula (NOA, GR)

loannis Kontogiannis (NOA & NKUA, GR)

Petr Heinzel, Pavol Schwartz, Pavel Kotrc (Ondrejov Observatory, CZ)
Pierre & Nicole Mein (Meudon Observatory, FR)
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