

The asymmetry in the GC population of NGC 4261

[Paolo Bonfini]

University of Crete

Foundation for Research and Technology-Hellas (FORTH)

- A. Zezas (University of Crete, FORTH, CfA)
- M. Birkinshaw (University of Bristol)
- D. M. Worrall (University of Bristol)
- G. Fabbiano (CfA)
- E. O'Sullivan (University of Birmingham, CfA)
- G. Trinchieri (INAF)
- A.Wolter (INAF)

• Research prompted by the asymmetry discovered in the X-ray point sources (Zezas et al. 2003)

- NGC 4261: E galaxy (E2) in Virgo cluster (~29 Mpc) (Jensen et al. 2003)
- Elliptical galaxies are *spheroidal* systems

 \rightarrow in general they are expected to show *Uniform* starlight distribution

 Apart from the "boxy" isophotes (e.g. Nieto & Bender 1989), does not show sign asymmetry (Schweizer & Seitzer 1992)

 \rightarrow the same uniform distribution is expected for X-ray sources

• .. THEY ARE NOT UNIFORM ! (Zezas et al. 2003)

- Point like sources are indeed Low Mass X-ray Binaries (LMXBs) (Giordano et al. 2005)
- LMXBs are binary systems in which accretion produces X-ray emission
- LMXBs in E have > 50% or more probability to be found in GCs (e.g. Fabbiano 2006)

 \rightarrow we want to check whether GCs show similar non uniform distribution

AIMS

.. WE STUDIED THE 2D DISTRIBUTION OF THE GCs OF NGC4261

• Aims:

I. Study the galaxy history: past galaxy interactions may have displaced the LMXBs and GCs in a similar fashion

II. Address the debate on the formation of LMXBs: establish whether they form in GCs or in the field

The data

- HST WFPC2 data filters:
 B, V, I (F450W, F606W, F814W)
 ← mosaic
- Source detection with SExtractor (Bertin & Arnouts 1996)
- Secure GC sample (718):
 - > cross-correlation V and I
 - > within D25 (D25 ~ 2')
 - > S/N (> 20)
 - > FWHM (1.5 < FWHM < 4 px)
 - > V I color (0.6 < V-I < 1.6 mag)
 - > axial ratio (0.5 < \leq < 2.0)

GCs population – Color Distribution

- GCs in E show color bimodality
- In the merging scenario: Blue ↔ "donated" by the mergers Red ↔ formed in the merging (Ashman & Zepf 1992)
- Blue ↔ metal poor
- Red ↔ metal rich
- Blue/Red: V I = 1.15 mag

2D distribution – Radial Profile

- Radial profile:
 - > Overall GC population is distributed as galaxy light (up to $R/R_{25} = 0.75$)
- S_N (S_N = N_{GC} × 10^{0.4(M_V+15)}) radial profile:
 > Red GCs consistently declining
 > Blue GCs constant
- In contrast with merging scenario (Red GCs should follow galaxy light)
- Possible confusion due to blending of colors

• Comparison of:

GC density **VS** surface brightness within a set of *elliptical* wedges

- Ellipse parameters (P.A., ∈, ..) determined from 2D fit (GALFIT, *Peng 2002*)
- Procedure:
 - > measure GC and light density (within each wedge) → profile
 - > perform a χ^2 test (fit light to GC azimuthal distribution)
 - > repeat for different wedge rotations
 - > identify rotation which maximizes χ^2

• The MAX χ_v^2 for the whole GCs sample was:

 $\chi_v^2 = 2.5 (9 \text{ d.o.f.})$

- We chose the maximum χ^2 $\rightarrow can't$ use the standard χ_v^2 density function to get confidence level
- We simulated a uniform distribution within each wedge and fit with constant
- We produced the χ_v^2 distribution:

 $P(\chi_v^2 > \chi_v^2 obs) < 0.1\%$

 \rightarrow asymmetry is statistically significant

I. Major Merging

> Is the best candidate to explain such significant asymmetry

.. *BUT*

NGC 4261 does not show strong sign of interaction in the past 1 Gyr

 \rightarrow stellar system is relaxed, GC system not

 \rightarrow different relaxation timescale for the GCs $\,$ - no evidence for such difference

II. Minor Merging

> Little mass involved

 \rightarrow easily explain displacement of GCs, but not donation or creation of GCs

e.g. NGC 1052 underwent a recent (1 Gyr) merging event with a gas rich dwarf *(van Gorkom et al. 1986)* its galaxy light showing almost no disturbance *(Schweizer & Seitzer 1992)* no young GCs associated with merger *(Pierce et al. 2005)*

III. Galaxy interaction

> Known to provoke displacements of the GCs systems e.g. NGC 1399 - NGC 1404 (Napolitano et al. 2002, Bekki et al. 2003, Bassino et al. 2006)

 > GCs may have been shifted from NW and SE "poles" towards NE-SW plane (with the galaxy nucleus masking the center)
 The GC systems extend much further than galaxy light
 → the displacement affected mostly the outermost GCs and not the light

.. BUT

several companions 1 to 2 Gyr off NGC 4261 (using group v dispersion) \rightarrow can not uniquely identify the responsible

Summary

- We studied the radial and azimuthal distribution, finding evidences for an *asymmetry* in the azimuthal distribution
- We explored the origin of the asymmetry in the context of galaxy interaction:
 ruled out the possibility of minor merging
 - > favored the hypothesis of fly-by encounter displacing the outermost GCs
 - > stressed the importance of relaxation time in case of major merger

< Hidden Slides >

GCs population - Luminosity Function

- Completeness simulation
- Gaussian fit (secure GCs truncated at V = 24.6 mag - 75% comp.)
- Secure:
 - $> V_{peak} = 25.1 \pm 0.8 \text{ mag}$ $\rightarrow D = 31.6 \pm 12 \text{ Mpc}$
- Candidate:
 - $> S_{N} = N_{GC} \times 10^{0.4(M_{V} + 15)} = 2.8 \pm 0.5$

2D distribution – Source clustering

I. Major Merging

> Is the best candidate to explain such significant asymmetry

.. *BUT*

NGC 4261 does not show strong sign of interaction in the past 1 Gyr

- \rightarrow stellar system is relaxed, GC system not
- \rightarrow different relaxation timescale for the GCs $\,$ no evidence for such difference
- > GCs could have been formed along a line-of-sight tail
- .. *BUT*

Numerical simulations suggest that massive *boxy* ellipticals are the result of dry mergers between spirals of similar size (*e.g. Khochfar & Burkert 2005; Naab, Khochfar & Burkert 2006*) → no significant GCs creation