Solar Axion Searches at CERN with the CAST Telescope

for the CAST Collaboration

Christos Eleftheriadis Aristotle University of Thessaloniki

Ioannina, September 5th, 2011 10th Hellenic Astronomical Conference

Dark matter: a lot of candidates

Hot dark matter, like neutrinos

Cold dark matter (this is the strong candidate..) WIMPS (~3 PhDs per parameter... may be more) Neutralino LSP

MACHOs... ... and last but not least \rightarrow Axions

Ioannina, Sept 5th, 10th Hel.As. Conference 2011

Relativistic particles cannot be controlled by gravity→ rotation curves cannot be explained in terms of HDM

Fritz Zwicky (1898-1974)

But, what is dark energy or dark matter ?

Ioannina, Sept 5th, 2011

10th Hel.As. Conference

A brief history of axion...

The strong CP violating term can be suppressed easily! You just need a massless quark!

...no quark is massless..

A solution proposed by Peccei and Quinn:

new global chiral U(1) symmetry spontaneously broken at scale f_{α}

 θ is not anymore a constant, but a field \rightarrow the axion a(x)

 \rightarrow Broken symmetry \rightarrow Goldstone theorem

Appearance of a spinless particle \rightarrow Nambu-Goldstone boson (axion)

If symmetry is perfect \rightarrow massless ...However, for some reason, no symmetry is perfect in this world \rightarrow axions acquire a small mass

Ioannina, Sept 5th, 10th Hel.As. Conference 2011

recapitulating...

- Axions are predicted to have
 - no charge,
 - very low mass,
 - spin-parity O⁻

$$m_a = 6 \,\mathrm{eV} \frac{10^6 \,\mathrm{GeV}}{f_a}$$

- very low interaction cross-sections
- They are
 - nearly invisible to ordinary matter
 - excellent candidates for dark matter
 - a necessary component of string theory

Ioannina, Sept 5th, 10th Hel.As. Conference 2011

Is it worth the search for axions?

Discovery of an axion:

- . New elementary particle
- Solution of strong CP problem
- · Dark matter particle

New solar physics

- answer to solar mysteries, e.g.:
- Solar corona heating problem,
- Flares
- Unexpected solar X-rays, ...

Where the Axions come from

- Cosmological axions (cold dark matter)
- Solar axions

Stellar plasmas may be a powerful source of axions..

Important notice:

The closest stellar plasma available is:

the Sun

Ioannina, Sept 5th, 2011

10th Hel.As. Conference

Primakoff effect

Axions are coupled to two photons

This could be done either in the sun interior or in earth...

a thermal photon converts into an axion in the Coulomb fields of nuclei and electrons in the solar plasma The axion converts into a photon under a strong magnetic field in the laboratory (inverse process, Sikivie 1983)

Ioannina, Sept 5th, 2011

10th Hel.As. Conference

Solar axion flux

(with new solar model implemented)

 $L_{a} = 1.9 \times 10^{-3} L_{\odot}$ Axion flux: $\Phi_{a} = 3.8 \times 10^{11} \text{ cm}^{-2} \text{ s}^{-1}$

Provided by Serpico & Raffelt Based on the standard solar model BP2004 (Bahcall et al., 2004)

Ioannina, Sept 5th, 2011

10th Hel.As. Conference

Experimental axion searches

Laser experiments (*laboratory*):

- Photon regeneration ("invisible light shining through wall")
- Polarization experiments (PVLAS)
- Search for dark matter axions:
 - Microwave cavity experiments (ADMX)
- Search for solar axions:
 - Bragg + crystal (SOLAX, COSME, DAMA)
 - Helioscopes (SUMIKO, CAST)

The CAST Collaboration

Canada

University of British Columbia, Department of Physics Michael Hasinoff

Croatia Rudjer Boskovic Institute K. Jacovcic, Milica Kremar, Biljana Lakic, Ante Ljubicic

France

CEA-Saclay Stephane Aune, Theopisti Dafni, Esther Ferrer-Ribas, Ioanis Giomataris, Igor Irastorza

Germany TU Darmstadt, Insitut für Kernphysik Dieter Hoffmann, Markus Kuster, Annika Nordt

Universität Frankfurt, Institut für Angewandte Physik Joachim Jacoby

Universität Freiburg

Horst Fischer, Jürgen Franz, Fritz-Herbert Heinsius, Dongwha Kang, Kay Königsmann, Julia Vogel

MPE Garching Heinrich Bräuninger, Peter Friedrich, Robert Hartmann, Markus Kuster

WHI München Rainer Kotthaus, Gerhard Lutz, Georg Raffelt, P. Serpico

Greece University of Patras Yannis Semertzidis, Konstantin Zioutas

National Center for Scientific Research (NRCPS) George Fanourakis, Theodoros Geralis, Kostas Kousouris

Ioannina, Sept 5th, 2011

Aristotle University of Thessaloniki Christos Eleftheriadis, Anastasios Liolios, Ilias Savvidis

Hellenic Open University, Patras C. Bourlis, Spyros Tzamarias

Russia

Russian Academy of Science, Institute for Nuclear Research Alexandre Belov, Sergei Gninenko

Spain University of Zaragoza

Berta Beltran, Jose Carmona, Susana Cebrian, Hector Gomez, Igor Irastorza, G. Luzon, Julio Morales, Asuncion Rodriguez, Jaime Ruz, Jose Villar

Turkey Dogus University Engin Arik, S. Cetin, Berkol Dogan, I. Hikmet

USA

Lawrence Livermoore National Laboratory Karl van Bibber, Micheal Pivovaroff, Regina Soufli

University of Chicago, Enrico Fermi Institute Juan Collar, David Miller

University of South Carolina, Department of Physics Frank Avignone, Richard Creswick, Horacio Farach

Switzerland European Organization for Nulcear Research (CERN) Klaus Barth, Martyn Davenport, Luigi Di Lella, Christian Lasseur, Thomas Papaevangelou, Alfredo Palacci, Hans Riege, Laura Stewart, Louis Walkiers

10th Hel.As. Conference

Ioannina, Sept 5th, 2011

10th Hel.As. Conference

CERN is bet Gtheriadis

3rd Joint ILIAS–CERN–DESY Axion–WIMPs Training Workshop

Department of Physics, University of Patras[®] / Greece 19-25 June 2007

Annual Workshops

4th Patras Workshop on Axions, WIMPs and WISPs Physics of Axions, Weakly Interacting Massive Particles and Weakly Interacting Sub-eV Particles in Universe and Laboratory

> aura Baudis (University of Zurich) Toerg Jaeckel (IPPP/Durham Univer

Axel Lindner (DESY) Andreas Ringwald (DESY) Konstantin Zioutas (University of Pa

DESY, Hamburg Site/Germany 18-21 June 2008

ht

5th Patras Workshop on Axions, WIMPs and WISPs

13-17 July 2009 University of Durham (UK)

6th Patras Workshop on Axions, WIMPs and WISPs

5-9 July 2010 Zurich University

7th Patras Workshop on Axions, WIMPs and WISPs

Programme

- The physics case for WIMPs, Axions, WISPs

- Review of collider experiments
- Signals from astrophysical sources
- Direct searches for Dark Matter
- Indirect laboratory searches for Axions, WISPs
 Direct laboratory searches for Axions, WISPs
- New theoretical developments

Organizing committee: Vasalia Anastasopotolo (University of Patras) Laura Baudia (University of Zurich) Joery Jacekel (UPP/Durham University) Azel Lindner (DESY) Andreas Ringwald (DESY) Marcs Schumann (University of Zurich) Konstantin Zouta (University of Patras) (chairman) http://axion-wimp.desy.de

CAST milestones

```
Proposal approved by CERN (13th April 2000)
Commissioning(2002)
CAST Phase I: vacuum operation (2003 - 2004) completed
CAST Phase II: (2005-2011)
4He run, (2005-2006) completed
                           0.02 \text{ eV} < \text{ma} < 0.39 \text{ eV}
3He run (2007-2011) data taking completed in 20<sup>th</sup> July 2011
                         0.39 eV <ma<~1.20 eV
Low energy axions (2007 - 2011) in parallel with the main program
                               ~ few eV range
            5th April 2011: Proposal to SPSC for 2012-2014
                                Start of 2nd solar cycle (!?)
     13th April 2011: CAST completed one solar cycle (11 years...)
```

Sun Filming

Twice a year (September and March): filming the Sun through the window Regular checks by CERN surveyors

Ioannina, Sept 5th, 2011

10th Hel.As. Conference

CCD • Excellent Energy Resolution

Excellent Space Resolution

Pixel size: 150µm x 150µm

Additional shield plus X-ray finger source for continuous monitoring of the spot position

2003: 11.5 \pm 0.2 \times 10⁻⁵ counts cm⁻² s⁻¹ keV⁻¹ 2004: 7.69 \pm 0.07 \times 10⁻⁵ counts cm⁻² s⁻¹ keV⁻¹

Background reduction by a factor of 1.5

Ioannina, Sept 5th, 2011

10th Hel.As. Conference

The X-Ray Telescope

Telescope-Magnet Alignment

<u>Space technology</u>:

Spare part of the ABRIXAS Space mission

Ioannina, Sept 5th, 2011

10th Hel.As. Conference

The X-Ray Telescope

~35% efficiency due to reflections

27 nested pairs of mirrors

very strong signal-to-noise improvement

Ioannina, Sept 5th, 10th Hel.As. Conference 2011

Telescope-CCD efficiency

In units of effective area, out of magnet's bore 14.52 cm²

Ioannina, Sept 5th, 2011

Data taking during 2003 and 2004 In total 12 months Result from CAST phase I:

 $g_{a\gamma\gamma} < 0.88 \times 10^{-10} GeV^{-1}$

Published in JCAP, hep-ex 0702006 (2007), CAST Collaboration

10th Hel.As. Conference

CAST phase II

Exploring higher axion masses...

- Coherence for higher masses may be restored by using buffer gas.
- Filling the two magnetic channels with helium
- The photon acquires an effective mass: $m_v > 0$
- Momentum transfer is

$$|q| = rac{m_a^2 - m_\gamma^2}{2E}$$
 (as opposed to $|q| = rac{m_a^2}{2E}$)

• Coherence condition (qL << 1) is recovered for a narrow mass range around m_{γ}

Ioannina, Sept 5th, 10th Hel.As. Conference 2011

Extending sensitivity to higher axion masses...

Axion to photon conversion probability:

$$P_{a \to \gamma} = \left(\frac{B_{a\gamma}}{2}\right)^2 \frac{g}{q^2 + \Gamma^2/4} \left[1 - e^{-\Gamma L/2} - 2e^{-\Gamma L/2} c \quad q \quad D\right] \quad Vacuum: \Gamma=0, m\gamma=0$$

Coherence condition: $qL < \pi$, $|q| = \frac{m_a^2}{2E}$

For CAST phase I conditions (vacuum), coherence is lost for ma > 0.02 eV.

With the presence of a **buffer gas** it can be **restored** for a narrow mass range:

$$q < \pi E \Rightarrow \sqrt{m_{\gamma}^2 - \frac{2\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{2\pi E_a}{L}}$$

with
$$m_{\gamma} = \sqrt{\frac{4\pi N_e}{m_e}} \stackrel{\alpha}{\approx} 2 .9 \sqrt[8]{\frac{Z}{A}\rho} e$$

 New discovery potential for each density (pressure) setting

CAST phase II

 m_v can be adjusted by changing the gas pressure:

$$m_{\gamma} \approx \sqrt{\frac{4\pi\alpha N_e}{m_e}} = 28.9\sqrt{\frac{Z}{A}\rho} \quad \text{eV}$$

•Every specific pressure of the gas allows the test of a specific axion mass.

•The higher the pressure, the higher the photon effective mass, the higher the axion mass tested.

•For every step there is a new discovery potential !

Ioannina, Sept 5th, 10th Hel.As. Conference 2011

Transforming to Phase II 2005

- Cold Windows (installed) /He-Gas System
- ⁴He gas system (in operation in 2005 and 2006)
 - High precision (better than 0.01 mbar)

⁴He pressure =13.43 mbar \Rightarrow m_a~ 0.39 eV/c²

Ioannina, Sept 5th, 10th He 2011

10th Hel.As. Conference

First time a helioscope explores the models region

Next step: upgrade to He³ phase, extending sensitivity up to 1 eV axion mass (135.8 mbar).

Ioannina, Sept 5th, 10th Hel.As. Conference 2011

Preliminary - 3He result

Density variation during a tracking AHe phase analysis not easy to be used.

> new formulation of the unbinned likelihood:

$$Log\left(L_{m_{a}}(g_{a\gamma})\right) = \underbrace{-g_{a\gamma}^{4} \int_{E} \int_{t_{k}} \frac{d^{2} n_{\gamma}}{dE \cdot dt_{k}} dE \cdot dt_{k}}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}$$

Zero counts detected contribution

One count detected contribution

1st term: expected number of axions. Depends on exposure time 2nd term: Depends on the gas density at the moment a count occurred

Preliminary - 3He result

Density variation during a tracking AHe phase analysis not easy to be used.

> new formulation of the unbinned likelihood:

$$Log\left(L_{m_{a}}(g_{a\gamma})\right) = \underbrace{-g_{a\gamma}^{4} \int_{E} \int_{t_{k}} \frac{d^{2} n_{\gamma}}{dE \cdot dt_{k}} dE \cdot dt_{k}}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}}{dE}\right) dE}_{K_{n_{i}}=1} \underbrace{Log\left(b_{ik} + g_{a\gamma}^{4} \int_{E_{i}}^{E_{i} + \Delta E} \frac{dn_{\gamma}^{k}$$

Zero counts detected contribution

One count detected contribution

1st term: expected number of axions. Depends on exposure time 2nd term: Depends on the gas density at the moment a count occurred

- Motivated by new physics cases
- Supported by detector improvements

101st Meeting of the CERN / SPSC

CAST Physics Proposal to SPSC

K. Zioutas on behalf of CAST

and in collaboration with

D. Anastassopoulos, O. Baker, M. Betz, P. Brax, F. Caspers, J. Jaeckel,
 A. Lindner, Y. Semertzidis, N. Spiliopoulos, S. Troitsky, A. Vradis.

Solar Paraphotons

Hidden Sector particles
Theoretically motivated

kinetic mixing: $\gamma \leftrightarrow \gamma'$ oscillations

NO magnetic field NO cold bores needed

Vacuum path length relevant for oscillations

🗌 a good sensitivity requires: 3 ULB MMs FS pnCCD

& solar tracking!!! Sun filming Sep. 2010

Solar Chameleons

- > Chameleons are **DE** candidates to explain the acceleration of the Universe
- Chameleon particles can be created by the **Primakoff effect** in a strong magnetic field. This can happen in the Sun.
- > The chameleons created inside the sun eventually reach earth where they are energetic enough to penetrate the CAST experiment. Like axions, they can then be back-converted to X-ray photons.
- > In vacuum, CAST observations lead to stronger constraints on the chameleon coupling to photons than previous experiments.
- When gas is present in the CAST pipe, the analogue spectrum of regenerated photons shows characteristic oscillations: ID

In addition...

Search in the visible: a, Y', CH, ... BaRBE & Transition Edge Sensor (TES)

Towards a new relic axion antenna?

Dielectric waveguide inside the CAST magnet may perform as a new kind of "*macroscopic fiber*", being a sensitive detector for relic axions:

O.1 - 1 meV rest mass range (experimentally inaccessible)

□ Feasibility study of the proposed concept is in progress

>>> theoretical estimates!!

Exploiting QCD axion models

Towards a new generation axion helioscope

- I. G. Irastorza¹, F. T. Avignone², S. Caspi³, J. M. Carmona¹,
- T. Dafni¹, M. Davenport⁴, A. Dudarev⁴, G. Fanourakis⁵,
- E. Ferrer-Ribas⁶, J. Galán^{1,6}, J. A. García¹, T. Geralis⁵,
- I. Giomataris⁶, H. Gómez¹, D. H. H. Hoffmann⁷, F. J. Iguaz⁶,
- K. Jakovčić⁸, M. Krčmar⁸, B. Lakić⁸, G. Luzón¹, M. Pivovaroff⁹,
- T. Papaevangelou⁶, G. Raffelt¹⁰, J. Redondo¹⁰, A. Rodríguez¹,
- S. Russenschuck⁴, J. Ruz⁴, I. Shilon^{4,11}, H. Ten Kate⁴, A. Tomás¹,
- S. Troitsky¹², K. van Bibber¹³, J. A. Villar¹, J. Vogel⁹,
- L. Walckiers⁴, K. Zioutas¹⁴

¹Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
 ²Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
 ³Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
 ⁴CERN, Geneva, Switzerland
 ⁵National Center for Scientific Research Demokritos, Athens, Greece
 ⁶IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif- sur-Yvette, France
 ⁷Technische Universität Darmstadt, IKP, Darmstadt, Germany
 ⁸Rudjer Bošković Institute, Zagreb, Croatia

⁹Lawrence Livermore National Laboratory, Livermore, CA, USA

¹⁰Max-Planck-Institut für Physik, Munich, Germany

¹¹Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

¹²Institute for Nuclear Research (INR), Russian Academy of Sciences, Moscow, Russia

¹³Naval Postgraduate School, Monterey, CA, USA

¹⁴University of Patras, Patras, Greece

Axion helioscopes FOM

3 parts drive the sensitivity of an axion helioscope

where b is the time- and area-normalized background of the detector, ϵ_d its efficiency; a is the focal spot area of the optics, ϵ_o its throughput, B is the magnet field strength, L its length, and A its cross sectional area; t is the exposure time.

Goals for the next 1 - 2 years

- Magnet

- Built a new "magnet", tailored to our needs
- Main goal: B2L2A ~ x1000 better than CAST (desirable), x100 (minimum)
- Other construction technical issues [feasibility study, design study.
- Work in progress

Optics

_

_

• Cost-effective large optics (all magnet instrumented) \Box 0.5-1 m2

Detectors

• Main goal: background ~ 10-7 keV-1 cm-2 s-1 >>> already reached!?

Platform, general assembly engineering

• 40-50% Sun coverage?

Conclusions CAST, during its 11 years of existence: > has put the strictest experimental limit on axion searches for a wide mass range

In combination with Microwave Cavity experiments (ADMX), a big part of QCD favored model region can be swept up to 2020

Constraints

- Astrophysical
 - Our sun
 - Globular clusters
 - White dwarfs
 - Supernova 1987A
 - all the above related to the energy loss argument
 Cosmological
 - Overclosure of Universe
- Experimental
 - Helioscope experiments with magnets
 - Experiments with crystals

Ioannina, Sept 5th, 10th Hel.As. Conference 2011

CONCLUSIONS

There are two main problems to be answered (related to axions)...

- 1. Strong CP problem
- 2. Dark matter
- For the time being, CAST established the most stringent experimental limit on axion coupling constant, exceeding for the first time astrophysical constraints.
- CAST phase II checked an experimentally unexplored axion mass coupling constant region predicted by axion models
- SPSC Committee at CERN is expected to decide on the new physics program of CAST