On the role of pc- to kpc-scale jet asymmetry and cosmic ray acceleration

Gizani¹, Nectaria A. B.

& Garett², M.A.G. AST(RON

Hellenic Open University, School of Science and Technology
 Astron, the Netherlands Foundation for Research in Astronomy

Outline

Introduction

The case of two powerful radio galaxies

What we know until now

Discussion

Cosmic ray generation, acceleration, propagation

Her A : Lorentz factor $\Gamma \cong 1.6$, Doppler factor $\cong 1$ for $\theta \approx 50^{\circ}$

ELASET 10th

4

HST/WFPC2 0.05" Chiaberge et al., 1999

Z=0.054

central kpc emission ~ \perp radio jet axis, Bright pair, $M_R \cong -23$ Martel et al., 1999

linear correlation of optical flux of compact core with radio core

ELASET 10th

optical

Hercules A

Very elongated cD galaxy: double nucleus & tail
radio emission from dimmer, larger galaxy VLA total intensity distribution

Van Breugel & Fomalont, 1984

Gizani 1997

21cm, 4 arcsec P_{178 MHz}~ 3.57 × 10²⁵ Whz⁻¹

Steep spectrum $\alpha \sim -1$, FR1.5

ELASET 10th

3C310

Gizani

18 cm, 1.4 arcsec

 $P_{178 MHz} = 2.3 \times 10^{27} WHz^{-1}$

ELASET 10th

Gizani

8

Kpc-jet(s)

21 cm, 4 arcsec

$P_{6\ cm}^{core} \sim 7.25 \times 10^{23} \ \mathrm{WHz^{-1}}$

47.0

46.8

RIGHT ASCENSION (B1950)

46.6

46.4

46.2

ELASET 10th

Gizani

~ 130 mJy

4 mas, R = -1

Global VLBI, 18 cm, phase referencing

Natural weighted 10 mas

~16.5 mJy $\approx 17 \times 5$ mas ~ 85° $T_{b} \sim 2.5 \times 10^{7} \text{ K}$ September 6th 2011

10

Whole source: $\alpha \cong -1.5$; young jets, rings $\alpha \cong -.7$; older lobes $\alpha \cong -1.5$; faint material $-2.5 \le \alpha \le -1.5$

ELASET 10th

Gizani

Hercules A

VLA B+C+D , 3.6 cm, 0.74 asec, rms ~ 11 µJy

~ 6.0 mJy

18 cm: ~41 mJy

ELASET 10th

EVN, 18 cm, 0.018 arcsec

<u>1– Gaussian fit</u> rms≈ 3.6 × 10⁻⁴Jy/beam

≈ 14.6 mJy
~18.2 × 7 mas
p.a. ~ 139°
T_b ≅ 2 × 10⁷ K

ELASET 10th

Contour map: PSPC + HRI 0.5 - 2 keV, 32^{''}, 1st cont 2.94 × 10⁻¹⁰ Wm⁻² sr⁻¹

Lobes confined by thermal pressure of ICM. Little entrainment ⇒ lobe energy~particles (more),fields

Grey: log- 20cm radio 1.4^{''}

 $L_x \approx 4.8 \times 10^{37} \text{ W}$ $L_x^{\text{point}} \approx 2 \times 10^{36} \text{ W},$ size=15 kpc

<u>Multiphase gas</u> ROSAT: 0.5 < kT (keV) < 1, N_H ≈ 6.2×10^{20} cm⁻² BeppoSax: 3 ≤ kT (keV) ≤ 5, ASCA: kT ≈ 4.25 keV,

Gizani & Leahy, 2004 Trussoni et al., 2001, Siebert & Brinkmann, 99 Chandra: ICM confines inner jets, presence of cavities not associated with radio lobes and front shock surrounding radio source→cocoon shock

Chandra map in (0.3-7.5)keV, smoothed at 2" devided by β model Nulsen et al., 2006

Combining radio (Faraday rotation) + X-ray data (e⁻ density): n is the electron density found from

$$\boldsymbol{n}(\boldsymbol{r}) = \boldsymbol{n}_o \left[\left(\boldsymbol{r}/\boldsymbol{r}_o \right)^{\boldsymbol{\alpha}_1} + \left(\boldsymbol{r}/\boldsymbol{r}_o \right)^{\boldsymbol{\alpha}_2} \right] \quad , \quad \boldsymbol{\alpha}_2 > \boldsymbol{\alpha}_1$$

Angle to the line of sight $\theta \approx 50^{\circ}$

extragalactic magnetic field of ICM has central typical value of $3 \le B_0$ (μ G) ≤ 9 , and radial dependence

$$\mathbf{B}(\mathbf{r}) = \mathbf{B}_{\circ}\mathbf{n}^{\mathbf{m}-1}$$

On tangling scales $4 \le D_o$ (kpc) ≤ 35

ELASET 10th

ICM confines the lobes very well								
		P _n	nin<< P _{th}					
Results of Mir	nimum-energy	calcula	tions and β m	odel fi	ts			
DRAGN	$\lg(P_{178})$	α	$u_{ m min}/3$	D	$R_{ m core}$	eta	n_0	kT
	$ m WHz^{-1}sr^{-1}$		pPa	kpc	kpc		$10^3\mathrm{m}^{-3}$	keV
Hercules A	27.33	1.01	0.30, 0.38	540	121	0.74	6.5	2.45
3C310	25.57	0.92	0.019, 0.028	340	84	0.5	2	2.5
B-fi	elds (µG) ir	nplie	d by Invers	e Coi	mptor	argu	iments	
			_	-				
Her A	4.3							
30310		3	6		→ R ^{IC}	⁵ ≈ 3R	me	
30310		3	_					
ELASET 10th		Gizani		ber 6 th 2011	21			

Cosmic Rays: What we know

Stochastic particle acceleration of UHECRs to high energies (10²⁰ eV) is possible within large-scale lobes of powerful radiogalaxies, but sources at low redshift.

radio galaxies are powerful enough to heat and support the cluster gas with injected cosmic-ray protons and magnetic field densities within a cluster radius of ~1 Mpc.

Relativistic e⁻ loose energy via numerous cooling mechanisms: 1) quickly through synchrotron emission whilst spiraling IC magnetic fields 2) via Compton scattering through collisions with photons of CMB. These processes not effective for energetic p: Compton & synchrotron cooling times >> Hubble-time.

Sub-parsec scale acceleration is efficient as long as the scales are comparable to the scale of jet generation or initial collimation.

Steepening of spectral index of radio emission \rightarrow cooling of electrons Steep spectral indices found in lobes of Hercules A and 3C310 imply short lifetimes of radiating particles and reacceleration of electrons. \rightarrow energy redistribution in ICM: energy lost by the energetic particles could be gained by the magnetic fields also heating the ICM. The clusters seem to grow. As a result the energy of CRs in the ICM should increase adiabatically.

Synchrotron cooling time is too short for the relativistic electrons to diffuse in the whole lobes considering the growth speed of the lobes. The short cooling time of the emitting cosmic ray electrons and the large extent of the radio sources suggest an ongoing acceleration mechanism in ICM.

Energy input into the central region of clusters (central cosmic ray energy) from the host RG \cong 1.7 ×10²² W kpc⁻³

Injected jet power may dissipate and heat the gas, or could accumulate and support the ICM (magnetic fields and particles).

The production rate of gamma rays above 100 MeV by π_0 decay after hadronic interactions of the energetic protons with the background gas

Cluster	$\begin{array}{cc} \mathbf{B}_{RM} & \mathbf{B}_{IC} \\ \boldsymbol{\mu} \mathbf{G} & \boldsymbol{\mu} \mathbf{G} \end{array}$		ϵ_{CR} 10 ⁻¹² m ⁻³ Ws ⁻¹	$\frac{dn_{\gamma}/dt}{10^{-20}\ m^{-3}\ s^{-3}}$		
Her A	3-9	4.3	2.4-4.8	0.94-1.9		
3C 310	-	3.6	2.4	0.19		

 $\gamma\text{-ray}$ emission could dominate the bolometric luminosity of the kiloparsec jet if the magnetic fields are of the order of ~10 μG along the jet.

Cluster	L_X^{bol} 10 ³⁶ W	L ^{AGN} 10 ³⁵ W	$P^{AGN}_{178MHz} 10^{26} \mathrm{W} \mathrm{Hz}^{-1} \mathrm{sr}^{-1}$	β	$\begin{array}{c} n_{e\circ} \\ 10^4 \ m^{-3} \end{array}$	kT keV	r _c kpc	r _{tot} kpc	cooling flow
Her A	48	20	19	$0.74 \pm .03$	1	0.5-1	121	2200	У
3C 310	1	~7	0.37	0.5	0.2	2.5	84	> 670	ý

In radiogalaxy jets, boundary layers are often clearly visible in radio polarization. Boundary layers in jets are sites of particle acceleration

Fossil AGN jets and cocoons leave a huge MHD storage even if the AGN is 'dead'

Initial X-ray cavities will have disappeared by the time that cosmic rays fill the large radio-emitting volume in the cluster gas and a dense filament will be formed. Combined observations of thermal filaments and radio lobes can be used to trail the propagation of cosmic rays, and study the magnetic structure in the hot ICM and the total cosmic ray energy involved.

Ευχαριστώ – Thank you