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…AND THE HADRONIC MODEL 
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THE HADRONIC MODEL: PHYSICAL 
PROCESSES 
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KEY IDEAS AND ASSUMPTIONS 

 
• Injection of high energy protons – proton energy and luminosity are 

free parameters. 
• Protons cool by (i) synchrotron  
                               (ii) photopair (Bethe-Heitler) 
                               (iii) photopion (neutral/charged) 
• Model (ii)  from MC results of Protheroe & Johnson (1996)  
                (iii) from SOPHIA code  (Stanev et al 2000). 
• Study the simultaneous evolution of protons and secondaries 

through time-dependent, energy conserving kinetic equations.  
• No external photons / no electron injection (pure hadronic model). 
      keep free parameters to a minimum (R, B, γp, Lp) 
 

 
 



AIMS 

1. Study photon spectral formation simultaneously with neutrino 
spectra. 

2. Calculate efficiencies (e.g. photon luminosity/proton luminosity) 
3. Study expected time signatures (as in leptonic models). 
4. Study potential supercriticalites (Stern et al. 1995, Kirk & AM 1992) 

Self consistent approach allows it while they go unnoticed when 
different approaches are employed (e.g. ‘ready’ proton distribution 
function). 
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INJECTION OF SECONDARΥ ELECTRONS - 
RESULTING PHOTON SPECTRA  
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S. Dimitrakoudis et al., in preparation 



INCREASING THE PROTON INJECTED 
LUMINOSITY 
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THE STEP TO SUPERCRITICALITY 
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Time-dependent transition of photon  
spectra from the subcritical to the  
supercritical regime 



AUTOMATIC PHOTON QUENCHING 
Stawarz & Kirk 2007 
Petropoulou & AM 2011 

Injected gamma-ray luminosity 

E
sc

ap
in

g 
lu

m
in

os
ity

 

gamma-rays 

soft photons 

Gamma-rays can be self-quenched: 
Non-linear network of 
• photon-photon annihilation 
• electron synchrotron radiation 
Operates independently of soft photons 
Poses a strong limit on the gamma-ray  
luminosity of a source   
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Soft photons from γ-ray quenching pump proton 

energy   proton losses  more secondaries 
 more γ-rays  

Exponentiation starts when γ-rays enter the 
quenching regime.            

 
 
 
   

 PHOTON QUENCHING  
AND PROTON SUPERCRITICALITY 
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A MAP OF PROTON SUPERCRITICALITIES 
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DYNAMICAL BEHAVIOUR 
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Simplified equations  
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CONCLUSIONS 

• One-zone hadronic model  
– Accurate secondary injection (photopion + Bethe Heitler)  
– Time dependent - energy conserving PDE scheme 

 
•  Five non-linear PIDE – c.f. leptonic models have only two 
•  First results for pure hadronic injection 

 - Low efficiencies 
 - γ-rays steeper than neutrino spectra   
 - Quadratic time-behaviour of radiation from secondaries (similar to 
synchrotron – SSC relation of leptonic models)  
 - Inherently non-linear (c.f. ‘Compton catastrophe’ in leptonic 
models)  

       - Strong supercriticalities exclude sections of parameter-space 
        used for modeling AGNs 
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