Spectroscopic studies on a LLQSOs sample & The impact of aperture effect on its classification

Evangelia Tremou

University of Cologne

in Collaboration with: Prof. Dr. A. Eckart, Dr. M. Garcia Marin and Dr. J. Zuther

Outline

Motivation The data Classification of the galaxies Simulating the Aperture Effect

Results

1

Summary & Outlook

Active Galactic Nuclei (AGN):

compact region at centers of galaxies Antonucci (1993); Urry & Padovani (1995)

Credit: Nasa

Active Galactic Nuclei (AGN):

compact region at centers of galaxies Antonucci (1993); Urry & Padovani (1995)

Radio Loud (10% of the population)

Credit: Nasa

n

Active Galactic Nuclei (AGN):

compact region at centers of galaxies Antonucci (1993); Urry & Padovani (1995)

Radio Loud (10% of the population) <u>Radio Quiet</u> (90% of the population)

Credit: Nasa

Active Galactic Nuclei (AGN):

compact region at centers of galaxies Antonucci (1993); Urry & Padovani (1995)

Radio Loud (10% of the population) <u>Radio Quiet</u> (90% of the population)

- Blazars
- Radio galaxies
- Radio Loud QSOs

Credit: Nasa

Credit: Nasa

Credit: Nasa

Low Luminosity Quasi Stellar Objects: intermediate luminous AGNs

10th Hellenic Astronomical Conference

Evangelia Tremou, September 5th 2011

BPT, Diagnostic Diagram

10th Hellenic Astronomical Conference

BPT, Diagnostic Diagram

10th Hellenic Astronomical Conference

~ 90 optical spectroscopic data from Hamburg/ESO survey (Wisotzki et al 2000)

10th Hellenic Astronomical Conference

~ 90 optical spectroscopic data from Hamburg/ESO survey (Wisotzki et al 2000)

• flux limit Bj < 17.3

10th Hellenic Astronomical Conference

Evangelia Tremou, September 5th 2011

~ 90 optical spectroscopic data from Hamburg/ESO survey (Wisotzki et al 2000)

- flux limit Bj < 17.3
- seyfert type I

10th Hellenic Astronomical Conference

~ 90 optical spectroscopic data from Hamburg/ESO survey (Wisotzki et al 2000)

- flux limit Bj < 17.3
- seyfert type I
- redshift z < 0.06

10th Hellenic Astronomical Conference

~ 90 optical spectroscopic data from Hamburg/ESO survey (Wisotzki et al 2000)

- flux limit Bj < 17.3
- seyfert type I
- redshift z < 0.06

~ 50 additional optical spectroscopic data from 6 Degree Field Galaxy Survey (6DFGS) (Jones et al 2004)

10th Hellenic Astronomical Conference

The spectroscopic data

10th Hellenic Astronomical Conference

The spectroscopic data

10th Hellenic Astronomical Conference

The spectroscopic data

10th Hellenic Astronomical Conference

Analysis of the Balmer components

10th Hellenic Astronomical Conference

Cross matching sources

	$[O III]/H\beta$ versus $[N II]/H\alpha$	
	6dFGS	HES
No of targets	32	32
No of Seyfert	21	19
No of Starburst	6	8
No of LINERs	1	0
No of Composites	4	5

All sources

	$[O III]/H\beta$ versus $[N II]/H\alpha$	
	6dFGS	HES
No of targets	44	59
No of Seyfert	32	33
No of Starburst	6	18
No of LINERs	1	0
No of Composites	5	8

10th Hellenic Astronomical Conference

10th Hellenic Astronomical Conference

Initial conditions:

- Circular symmetry (face-on galaxy).
- Pixel scale: 0.1 "/pixel.

• 3 concentric emission line regions, nucleus (3% of the galaxy size, ~ 0.6 kpc), bulge (22% of the galaxy size, ~ 4.7 kpc) and disk (75% of the galaxy size, ~ 16.1 kpc).

Disk dominated.

• Emitted line flux = constant.

- Slit size (HES) = $2'' \times 2''$ 'seeing disk',
- fibre size (6DFGS) = 6.7" and fibre size (SDSS) = 3".
- nearby galaxy (i.e. z = 0.02).

Aim: further studies on different galaxies' cases

The galaxy

Seyfert - 2, tracing ionization cone

Typical Seyfert - I with composite bulge (=)

Typical Seyfert-I - SF bulge, with long slit (7)

Cosmological implications

- No evolution consideration.
- 0. | < z < 7.
- The biggest the aperture size, the less data distribution.
- The most local galaxy is dominated by AGN activity.

10th Hellenic Astronomical Conference

AGN

SB

SB

Cosmological implications

10th Hellenic Astronomical Conference

- Star forming activity in a significant number of the LLQSO sample members (host galaxy).
- No LINER contribution in the LLQSO sample.
- Most of the sources have FWHM > 2000 km/s, Seyfert-I confirmation.
- HE 0203-0031 source may be an accretion disk candidate.
- Detection of double narrow components, indicates the existence of 'super-winds' and mergers.
- Variations up to ~0.6 dex in [NII]/H α axis and up to ~0.4 dex in [OIII]/H β can be explained by the simulations.
- Impact of aperture effect is larger on the local universe.
- The individual classification of the galaxy region and its effective area are important.
- SDSS is affected by aperture effect.

10th Hellenic Astronomical Conference

Analysis of ~ 90 sources from two data sets (HES & 6DFGS).

BPT gives information about host galaxy and that helps in merger scenario (further studies: stellar population analysis, involving times scales for SB).

Re - classification of the galaxies according to diagnostic diagrams.

Impact of the aperture effect on more realistic models.

Appendix

Appendix

FWHM H β <u>NOT</u> a clear peak!

Evangelia Tremou, September 5th 2011

QSOs are among the most distant and most luminous objects in the universe

• Redshift $(z \ge 0.1)$

• Detectable at radio, infrared, optical, ultraviolet, X-ray and even gamma rays

Harbor a Super Massive Black Hole
(10⁶ - 10⁹ M_☉)

Credit: M.Garcia Marin

QSOs are formed via strong tidal interactions or mergers (i.e. Sanders, 1988a)

10th Hellenic Astronomical Conference