

Max-Planck-Institut für Radioastronomie

Strong-Field Gravity tests with binary pulsars

Constrains on gravitational dipolar radiation with PSR J1738+0333

John Antoniadis[,]

P. Freire¹, N. Wex¹, K. Lazaridis¹ M. van Kerkwijk², G. Esposito-Farese⁵, M. Kramer¹, J. Verbiest¹, M. Bailes⁴, B. Jacoby⁴, M. Tauris³, D. Koester⁶

¹Max-Planck-Institute for Radioastronomy, Bonn, Germany
²University of Toronto, Canada
³Argelander Institute for Astronomy, Bonn, Germany
⁴Center for Astrophysics and Supercomputing, Swinburne, Australia
⁵GReCO, Institut d'Astrophysique de Paris, France
⁶Institute for Theoretical Physics and Astrophysics, Kiel, Germany

Outline

Introduction	GR and the ''need'' for alternatives Scalar-Tensor Theories Timing of binary pulsars
The JI738+0333 system	Characteristics Constrains on dipolar radiation Constrains on TeVeS theories?
Future prospects	Surveys for new pulsars Advances in instrumentation New systems?

GR vs not GR...

GR has passed all tests so far with flying colors!

*Very well tested in the solar system (e.g. Mercury perihelion advance, light deflection, Gravity Probe B, LLR...)

*But...not well tested in the strong-field regime

GR vs not GR...

GR has passed all tests so far with flying colors!

*Very well tested in the solar system (e.g. Mercury perihelion advance, light deflection, Gravity Probe B, LLR...)

*But...not well tested in the strong-field regime

Evidence for breakdown?

*Dark matter - dark energy problem

*inconsistent with modern theories (e.g. super-strings)

Alternative theories

Scalar tensor theories are considered as the most well-founded possible alternatives

Alternative theories

Scalar tensor theories are considered as the most well-founded possible alternatives

$$S = \frac{c^2}{16\pi G} \int d^4x \sqrt{-g} R + S_{\substack{\text{standard}\\\text{model}}} \begin{bmatrix} \text{all matter} \\ \text{fields} \end{bmatrix} g_{\mu\nu}$$

Alternative theories

Scalar tensor theories are considered as the most well-founded possible alternatives

$$S = \frac{c^2}{16\pi G} \int d^4x \sqrt{-g} R + S_{\substack{\text{standard}\\\text{model}}} \begin{bmatrix} \text{all matter} \\ \text{fields} \end{bmatrix} g_{\mu\nu}$$

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left(R^* - 2g_*^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi \right) + S_{\text{matter}} \left[\text{matter}; g_{\mu\nu} \equiv A^2(\varphi) g_{\mu\nu}^* \right]$$

Alternative theories

If the mass of the scalar field is small enough it could pass the solar system tests.

For Neutron-stars it could still be energetically favorable to become scalarized

The Pulsar Phenomenon

The Pulsar Phenomenon

The Pulsar Phenomenon

The Pulsar Phenomenon

Orbital Period, P₅ Eccentricity, e Inclination, *i* Epoch of periastron, *To* Longitude of periastron, **ω** Longitude of ascension, **Ω** Projected semi-major axis, x

Projected semi-major axis, x

Spin precession

Example: Orbital decay due to the emission of gravitational waves

Example: Orbital decay due to the emission of gravitational waves

GR: Emission of quadropolar gravitational radiation

Example: Orbital decay due to the emission of gravitational waves

GR: Emission of quadropolar gravitational radiation

Example: Orbital decay due to the emission of gravitational waves

GR: Emission of quadropolar gravitational radiation

Scalar fields: + Dipolar radiation

$$\dot{P}_{\rm b}^{\rm dipole} \simeq -\frac{4\pi^2 G_*}{c^3 P_{\rm b}} \frac{m_{\rm p} m_{\rm c}}{m_{\rm p} + m_{\rm c}} (\alpha_{\rm p} - \alpha_{\rm c})^2$$

Example: Orbital decay due to the emission of gravitational waves

GR: Emission of quadropolar gravitational radiation

Scalar fields: + Dipolar radiation

 $\dot{P}_b{}^{GW} = \dot{P}_b{}^{GR} = -\frac{192\,\pi}{5} \left(\frac{2\pi}{P_b}\right)^{5/3} \frac{(T_\odot m_c)^{5/3} q}{(q+1)^{1/3}}$ Cumulative shift of periastron time (s) -10-15-20General Relativity prediction -25 -30-35 1995 2000 Weisberg & Taylor 2003

Measurable only in close PSR+WD binaries

Example: Orbital decay due to the emission of gravitational waves 5.86 ms PSR + white dwarf binary, 8.15 h highly circular orbit

Observed for 7 years with Arecibo

Measured orbital decay , $\dot{P}_{\text{b}} =$ -27.9±3.8 fs/s

Companion's mass, $M_{\rm WD}$ (M_{\odot}, spectroscopy) ... 0.181^{+0.007}_{-0.005}

Antoniadis et al. in preperation

Antoniadis et al. in preperation

$$\dot{P}_{b}^{\text{QGW}} = -\frac{192 \pi}{5} \left(n_{b} T_{\odot} m_{c} \right)^{5/3} \frac{q}{(q+1)^{1/3}} = -27.3(9) \,\text{fs}\,\text{s}^{-1}$$

"Excessive" decay:

$$\dot{P}_b^{\rm xs} = (-0.6 \pm 4.0) \times 10^{-15} {\rm s} {\, {\rm s}}^{-1}$$

"Excessive" decay:

$$\dot{P}_b^{\rm xs} \; = \; (-0.6 \, \pm \, 4.0) \times 10^{-15} {\rm s} \, {\rm s}^{-1}$$

Most constraining limit on scalar-matter coupling strength :

 $\alpha_0^2 < 8.3 \times 10^{-5} (95\% \text{ C. L.})$

See Lazaridis et al. (2009) for details

Does the same limit apply to Tensor-Vector-Scalar theories? (relativistic MOND)

If so (Bruneton & Esposito-Farese 2007), the former limit makes these theories ''unnatural''

Does the same limit apply to Tensor-Vector-Scalar theories? (relativistic MOND)

If so (Bruneton & Esposito-Farese 2007), the former limit makes these theories ''unnatural''

The need for more pulsars..

Pulsar Fast Fourier Transform Spectrometer (PFFTS)

New 7-beam 21-cm primary focus receiver at Effelsberg

Effelsberg (North) + Parkes (South) >1000 expected new discoveries (>150 MSPs)

D. Champion, E. Bahr, C. Ng, M. Kramer et al.

Galactic Longitude

New instumentation...

Instrumentation

Feed design by Sandy Weinreb (JPL)

New instumentation...

Instrumentation

Being developed:

New 600-3000 MHz ultra-broadband receiver @ Effelsberg Feed design by Sandy Weinreb (JPL) ERC consolidated grand (2.1 ME, Paulo Freire) Whole bandwidth coherently dedispersed!

> Higher S/N ISM effects removal

Feed design by Sandy Weinreb (JPL)

New discoveries

New PSR+WD in a 2-hour orbit

Preliminary results show that there is a high chance for the NS to be above 2.2 solar masses

If so ~20 times more luminous in dipolar radiation than J1738

Ongoing observations with Arecibo (Lynch et al.)

Observations with VLT scheduled for this December (Antoniadis et al.)

New discoveries

New PSR+WD in a 2-hour orbit

Preliminary results show that there is a high chance for the NS to be above 2.2 solar masses

THANK YOU

$$\gamma^{PPN} - 1 = -2\frac{\alpha_0^2}{1 + \alpha_0^2}$$
$$\beta^{PPN} - 1 = \frac{\beta_0 \alpha_0^2}{2(1 + \alpha_0^2)^2}$$

Timing parameters		
Reference Time (MJD)	54600.000177627541568	
Right Ascension, a (J2000)	17 ^h 38 ^m 53.9658433(6)	
Declination, δ (J2000)	03° 33' 10!'86698(3)	
Proper Motion in α , μ_{α} (mas yr ⁻¹)	+7.058(5)	
Proper Motion in δ , μ_{δ} (mas yr ⁻¹)	+5.176(10)	
Parallax, π_x (mas)	0.60(4)	
Spin Frequency, v (Hz)	170.93736991146355(5)	
First Derivative of ν , $\dot{\nu}$ (10 ⁻¹⁵ Hz s ⁻¹)	-7.047742(11)	
Dispersion Measure, DM (cm ⁻³ pc)	33.77261(3)	
Orbital Period Pb (days)	0.3547907398686(19)	
Projected Semi-Major Axis, x (lt-s)	0.343429121(17)	
Time of Ascending Node, Tasc (MJD)	54600.200400109(4)	
$\eta \equiv e \sin \omega$	$(-0.3 \pm 1.1) \times 10^{-7}$	
$\kappa \equiv e \cos \omega$	$(3.5 \pm 1.1) \times 10^{-7}$	
First Derivative of P _b , P _b (10 ⁻¹⁵ s s ⁻¹)	-17.7(3.8)	
"range" parameter of Shapiro delay ^b , $r(M_{\odot})$	0.181	
"shape" parameter of Sapiro delay ^b , $s \equiv \sin i$	0.5388	

Limits (not fitted with other timing parameters)

Orthometric Amplitude of the Shapiro Delay, h_3 (µs)	0.014(14)
Amplitude of fourth harmonic, h4 (µs)	0.031(18)
Second Derivative of ν , $\ddot{\nu}$ (10 ⁻²⁸ Hz s ⁻²)	-1.3(6)

Derived Parameters

Galactic Longitude, l	27?7213
Galactic Latitude, b	17?7422
Distance, d (kpc)	1.66(12)
Total Proper Motion, μ (mas yr ⁻¹)	8.752(7)
Spin Period, P (ms)	5.850095859775700(17)
First Derivative of Spin Period, P (10 ⁻²⁰ ss ⁻¹)	2.411993(4)
Characteristic Age, τ_c (10 ⁹ yr)	3.8
Dipolar Magnetic Flux Density at the Poles, B_0 (10 ⁸ G)	3.8
Mass Function, $f(M_{\odot})$	0.0003455012(12)
Orbital inclination ^b , i (°)	32.6(1.0)
Pulsar Mass ^b , m_p (M_{\odot})	$1.46_{-0.04}^{+0.05}$
Total Mass of Binary ^b , M_t (M_{\odot})	$1.64_{-0.05}^{+0.06}$
Eccentricity, e	$(3.5 \pm 1.1) \times 10^{-7}$
Apparent \dot{P}_b due to Shklovskii effect, \dot{P}_b^{Shk} (fss ⁻¹)	9.5(7) ^a
Apparent \dot{P}_b due to Galactic acceleration, \dot{P}_b^{Gal} (fss ⁻¹)	0.73(17) ^a
Intrinsic \dot{P}_b , \dot{P}_b^{Int} (fs s ⁻¹)	$-27.9(3.8)^{a}$
Predicted \dot{P}_b , \dot{P}_b^{QGW} (fss ⁻¹)	$-27.3(9)^{b}$
"Excess" orbital decay, $\dot{P}_b^{xs} = \dot{P}_b^{Int} - \dot{P}_b^{QGW} (\text{fs}\text{s}^{-1}) \dots$	$-0.6(4.0)^{a,b}$