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We describe the structure of jets containing both plasma and 
magnetic field

We focus at the region further from the jet engine, where the 
structure is mainly affected by the boundaries and not very 
sensitive to the source (i.e. Spruit 2010)

The external timescales are slow enough, compared to the internal 
ones, so that the system can reach an equilibrium state

If the reconnection takes place fast enough we expect that any 
current sheets will be dissipated



Physical Question



Physical Question

What is the structure of a jet which:



Physical Question

What is the structure of a jet which:

Contains magnetic field



Physical Question

What is the structure of a jet which:

Contains magnetic field

Contains some hot plasma (pressure)



Physical Question

What is the structure of a jet which:

Contains magnetic field

Contains some hot plasma (pressure)

The plasma is moving along the axis



Physical Question

What is the structure of a jet which:

Contains magnetic field

Contains some hot plasma (pressure)

The plasma is moving along the axis

Is in equilibrium



Physical Question

What is the structure of a jet which:

Contains magnetic field

Contains some hot plasma (pressure)

The plasma is moving along the axis

Is in equilibrium

Has no discontinuities



Physical Question

What is the structure of a jet which:

Contains magnetic field

Contains some hot plasma (pressure)

The plasma is moving along the axis

Is in equilibrium

Has no discontinuities

The application:



Physical Question

What is the structure of a jet which:

Contains magnetic field

Contains some hot plasma (pressure)

The plasma is moving along the axis

Is in equilibrium

Has no discontinuities

The application:

Dynamically relaxed structures



Physical Question

What is the structure of a jet which:

Contains magnetic field

Contains some hot plasma (pressure)

The plasma is moving along the axis

Is in equilibrium

Has no discontinuities

The application:

Dynamically relaxed structures

Endpoints of dissipative evolution



Physical Question

What is the structure of a jet which:

Contains magnetic field

Contains some hot plasma (pressure)

The plasma is moving along the axis

Is in equilibrium

Has no discontinuities

The application:

Dynamically relaxed structures

Endpoints of dissipative evolution

Simulation trial solutions - initial conditions
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formulation

Magnetic flux with poloidal and toroidal 
components and some plasma are contained 
within a cylinder

We assume cylindrical symmetry

Some hot plasma confines the cylinder

What is the equilibrium solution for this 
structure?
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Relativistic Case
Motion along the z axis 
induces electric field

Using the same means as 
in the static case we can
solve the relativistic
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Stability

In the 2-D simulations the overall behaviour is stable

The kink-instability however cannot be investigated through 2-D 
simulations

From the Kruskal-Shafranov and the Suydam criteria we expect 
some unstable regions in the “poloidal” equilibrium

The velocity shear stabilizes and suppresses some instabilities
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Conclusions

We have explored a class of solutions of the G-S equation in static 
and relativistic context

The solutions without current sheets are particularly useful for 
simulations as initial conditions or test configurations

They answer the question of the pressure lying between the pure 
hydro models and the magnetic models

In the observational side they do not have significant differences 
from the Force-Free structures used
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