

Magnetar Dynamics & Gravitational Waves

KOSTAS KOKKOTAS

- ✓ Are gravitational waves from giant magnetar flares observable? B. Zink, P.D. Lasky, K.D. Kokkotas (2011) <u>arXiv:1107.1689v1 [gr-qc]</u>
- ✓ Hydromagnetic Instabilities in Neutron Stars. P.D Lasky, B. Zink, K.D. Kokkotas, K. Glampedakis, ApJ, 735, L20 (2011)
- ✓ HORIZON: Accelerated General Relativistic Magnetohydrodynamics B. Zink (2011) arXiv:1102.5202v1 [gr-qc]
- ✓ Magnetars oscillations in the presence of a crust A. Colaiuda & K.D.Kokkotas MNRAS 414, 3014 (2011)

Strong Magnetic Fields in Neutron Stars

- Rotation varies due to magnetic breaking
- Only infer exterior dipole component

$$B_d \sim 3.2 \times 10^{19} (P\dot{P})^{1/2} G$$

• Magnetars

 $B_d \ge 10^{14} - 10^{15} G$

Magnetars

- Young, slowly spinning (P~10s) systems (about 21)
- Exhibit regular γ-ray flares
 - Believed to be powered by magnetic field
 - Either trigger or are preceded by starquakes
 - Some linked to glitches

Three giant flares observed with peak luminosities ~10⁴⁷ erg/s

- March 5, 1979 : SGR 0526-66
- August 27, 1998 : SGR 1900+14
- December 27, 2008: SGR 1806-20
- Giant flares
 - QPOs 10's -100's of Hz
 - Magnetic field reconstruction
 - Possible f-mode excitation

Magnetars

QPOs in decaying tail (Israel *et al.* 2005; Watts & Strohmayer 2005, 2006)

SGR 1900+14 : 28, 54, 84, & 155 Hz

SGR 1806-20 : 18, 26, 29, 92.5, 150, 626.5, 720, 1837 & 2384 Hz

- A few more : 17, 21, 36, 59, 116 Hz (Habaryan, Neuhauser, KK 2011)

Sotani, KK, Stergioulas '07,`08,'09 Levin `07,`08,`10, Glampedakis etal '07 Cerda-Duran etal '09,'10, Samuelsson etal '07 Colaiuda+KK '08,`09,`11

For SGR 1806-20 (Colaiuda+KK '09,'11)

- We show that crust and Alfvén modes can explain all observed QPOs.
- The magnetar has EoS APR, mass 1.4M_o and 11.6km radius.

Our aim...

- 3D GRMHD simulations of known and arbitrary initial magnetic field configurations
- Magnetic field instabilities relevant for flare generation instability mechanisms, relevant timescales, phenomenology (GR)
- Understanding stable magnetic field configurations mixed poloidal - toroidal configurations, relevant strengths of components, multipolar structure...

Poloidal Field Instabilities

Markey & Tayler 1973 Braithwaite& Spruit 2006 ✓ 3 Dimensional
✓ Fully Non-Linear
✓ General Relativistic
✓ GR-MHD
✓ Cactus

Horizon GPU version of THOR (the fastest code in the market!)

Poloidal Field Instabilities

Lasky, Zink, KK, Glampedakis ApJL (2011)

Simulation of Magnetic Field Instability

Lasky, Zink, KK, Glampedakis ApJL (2011)

GW from Magnetars

- **EM energies**: SGR 1806-20, 2004 ~5x10⁴⁶ erg
- GW energy upper limits (Abadie etal 2011)
 - White noise: 3x10⁴⁴ erg
 - F-mode: 2x10⁴⁷ erg

Theoretical Work

- Corsi & Owen (2011) as above 10⁴⁹ erg
- Ciolfi etal (2011) NR excitation of the f-mode fro inertial field rearrangements (B~10¹⁷) (S/N ~2-5)

Interferometer Projects

- Current detectors can measure strains ΔL/L ~ 10⁻²¹ on timescales of 0.01 s
- ✓ Over 4 km this corresponds to $\Delta L \simeq 10^{-16}$ cm smaller than a proton.

Einstein Telescope (ET)

- ✓ Entering the era of routine GW astronomy
- A pan-European project
- ✓ Built underground
- ✓ 10 km triangle
- Timescale: start 2018 lasting for many decades

Ioannina

Towards GW Astronomy 2014...

Credit: R.Powell

Magnetars & GWs

Gravitational Waves

Zink, Lasky, KK (2011)

Gravitational Waves

Detectability I

Detectability II

Conclusion

- Study of the global, catastrophic magnetic field reconfiguration with 3D-GRMHD simulations
 - Attempted upper limit for internal mechanisms
- f-modes
 - $E_{GW} \sim 10^{41-43}$ for "observed" B-field strengths
 - Unlikely detection!
 - Scales like $B^6 \rightarrow$ need much stronger internal field
 - Realistic fields Alfven speed << sound speed
- Alfvén & g-modes (10 500 Hz)
 - Very dynamic background in simulations
 - More work required watch this space...

Outlook

What could change this picture?

- More coherent motion in Alfvén waves
- Alternative magnetic field topologies
 - Hard to imagine changing emission by orders of magnitude
 - Should be tested
- Strong internal toroidal field?
 - Recent work on equilibria shows this is not likely
 - Ciolfi et al. 2009, Glampedakis et al. 2011, Lander et al. 2011
- Superconductivity in core
 - Boosts Alfvén speed by 20 80%
 - Promotes better coupling with f-mode