Fundamental Parameters of Four Massive Eclipsing Binaries in Westerlund 1

Alceste Bonanos

National Observatory of Athens, IAA Greece

September 5th, 2011

Eclipsing Binaries

Light curves: period, inclination, eccentricity, longitude of periastron (ω), fractional radii, flux ratio (Teff₂/Teff₁)

Spectra: radial velocity semi-amplitudes, eccentricity, ω (Teff₁, Teff₂, intrinsic color, reddening)
 Kepler's law: semi-major axis of orbit, <u>radii, masses</u>

Most Massive Stars in Binaries

• >116 ± 33 M _o , >48 ± 20 M _o (Schnurr, Moffat et al. 2009)	RI45 (WN6ha)
• 116 ± 31 M _o , 89 ± 16 M _o (Schnurr, Moffat et al. 2008)	NGC 3603-AI (WN6ha)
• >87 ± 6 M _o , >53 ± 4 M _o (Niemela et al. 2008)	WR 21a (O3f*/WN6ha)
• 83 ± 5 M _o , 82 ± 5 M _o (Rauw et al. 2004, Bonanos et al. 2004)	WR 20a (WN6ha)
• >78 ± 8 M _o , >66 ± 7 M _o (Taylor et al. 2011)	R139 (06.5 lafc + 06 laf)
• 70.0 ± 6.9 M _o (Orosz et al. 2007)	M33 X-7 (O7 III + BH)
• 60 ± 5 M _o (Stroud et al. 2010)	Cyg OB2-B17 (O7 laf ⁺ +O9 laf)
• 56.9 ± 0.6 M _o (Massey et al. 2002)	R136-38 (O3V+O6V)

Most Massive Stars in Binaries

• >116 ± 33 M _o , >48 ± 20 M _o (Schnurr, Moffat et al. 2009)	R145 (WN6ha)
 I 6 ± 3 M_o, 89 ± 16 M_o (Schnurr, Moffat et al. 2008) 	NGC 3603-AI (WN6ha)
• >87 \pm 6 M _o , >53 \pm 4 M _o (Niemela et al. 2008) Smith	WR 21a (O3f*/WN6ha)
• 83 ± 5 M _o , 82 ± 5 M _o (Rauw et al. 2004, Bonanos et al. 2004)	WR 20a (WN6ha)
• >78 ± 8 M _o , >66 ± 7 M _o (Taylor et al. 2011)	R139 (06.5 lafc + 06 laf)
• 70.0 ± 6.9 M _o (Orosz et al. 2007)	M33 X-7 (O7 III + BH)
• 60 ± 5 M _o (Stroud et al. 2010)	Cyg OB2-B17 (07 laf ⁺ +09 laf)
• 56.9 ± 0.6 M _o (Massey et al. 2002)	RI36-38 (O3V+O6V)

Fundamental parameters for massive stars

Young Massive Clusters

	$\log M1$	$\log M2$	Radius	Age
Cluster	$({ m M}_{\odot})$	$({ m M}_{\odot})$	(pc)	(Myr)
Wd 1	3.8	4.75	0.6	3.5 - 5
Quintuplet	3.0	3.8	1.0	3-6
Arches	3.7	4.3	0.19	2-3
Center	3.0	4.0	0.23	3-7
NGC 3603	3.1	3.7	0.23	2.5
R136	3.4	4.5	1.6	< 1 - 2

Clark & Negueruela (2005)

MI: mass in visible stars

M2: total mass assuming Salpeter IMF

Eclipsing Binaries in Westerlund 1

Reduction & Analysisby Eugenia KoumpiaMagellan/MIKE & IMACS+MOE spectra9 nights in 2007-2008Hel λλ6678, 7065

PHOEBE (Prsa & Zwitter 2005)

Wd deb

Binary	P (days)	М ₁ (М _о)	М ₂ (М _о)	R ₁ (R _o)	$R_2(R_o)$	logg ₁	logg ₂	Ecc.	Inclin. (°)
Wddeb	4.447	15.4	11.1	6.8	4.8	3.96	4.12	0.1742	89
Wd36	3.181	15±2	11±2	11±1	9±1	3.55	3.55	0 (fixed)	73.3±0.2
WR770	3.518	40.2	14.75	17.38	7.7	3.56	3.83	0 (fixed)	56.9
Wd13	9.266	28±1	38±2	24±2	28±2	3.00	3.38	0 (fixed)	56±1

detached system

Wd 36

Binary	P (days)	М ₁ (М _о)	M ₂ (M _o)	R ₁ (R _o)	$R_2(R_o)$	logg₁	logg ₂	Ecc.	Inclin. (°)
Wddeb	4.447	15.4	11.1	6.8	4.8	3.96	4.12	0.1742	89
Wd36	3.181	15±2	11±2	11±1	9±1	3.55	3.55	0 (fixed)	73.3±0.2
WR77o	3.518	40.2	14.75	17.38	7.7	3.56	3.83	0 (fixed)	56.9
Wd13	9.266	28±1	38±2	24±2	28±2	3.00	3.38	0 (fixed)	56±1

contact system

WR770 (WN6-7)

Binary	P (days)	M ₁ (M _o)	M ₂ (M _o)	R ₁ (R _o)	$R_2(R_o)$	logg₁	logg ₂	Ecc.	Inclin. (°)
Wddeb	4.447	15.4	11.1	6.8	4.8	3.96	4.12	0.1742	89
Wd36	3.181	15±2	11±2	11±1	9±1	3.55	3.55	0 (fixed)	73.3±0.2
WR77o	3.518	40.2	14.75	17.38	7.7	3.56	3.83	0 (fixed)	56.9
Wd13	9.266	28±1	38±2	24±2	28±2	3.00	3.38	0 (fixed)	56±1

 $f(M_1, M_2) = (M_2 \sin i)^3 / (M_1 + M_2)^2 = 21 M_o$

Wd 13 (B0Ia⁺/WNVL+O9.5-B0.5I)

Binary	P (days)	М ₁ (М _о)	M ₂ (M _o)	R ₁ (R _o)	$R_2(R_o)$	logg₁	logg ₂	Ecc.	Inclin. (°)
Wddeb	4.447	15.4	11.1	6.8	4.8	3.96	4.12	0.1742	89
Wd36	3.181	15±2	11±2	11±1	9±1	3.55	3.55	0 (fixed)	73.3±0.2
WR77o	3.518	40.2	14.75	17.38	7.7	3.56	3.83	0 (fixed)	56.9
Wd13	9.266	28±1	38±2	24±2	28±2	3.00	3.38	0 (fixed)	56±1

near contact system

Wd 13

Fig. 3. Radial velocity curve for W13.

Table 2. Summary of orbital and physical parameters of $W13^a$.

Parameter	Value	
$T_0 (\mathrm{MJD})^a$	54 643.080	
P (days)	9.2709 ± 0.0015	
$q = m_{\rm abs}/m_{\rm em}$	1.53 ± 0.10	
$a(R_{\odot})$	72±3	
е	0 (fixed)	
i	62^{+3}_{-4} °	
	Emission	Absorption
Filling factor	0.93 ± 0.05	0.74 ± 0.1
$T_{\rm eff}$ (K)	25 000 (fixed)	25000 ± 2000
$R(R_{\odot})$	22 ± 2	21 ± 2
$\gamma (\mathrm{kms^{-1}})$	-48.2 ± 3.1	-65.9 ± 2.4
$K (\mathrm{km}\mathrm{s}^{-1})$	210.2 ± 8.7	137.3 ± 6.7
$M\sin^3 i (M_{\odot})$	15.9 ± 1.9	24.4 ± 3.0
$M(i=65^\circ) (M_\odot)$	21.4 ± 2.6	32.8 ± 4.0
$M(i = 62^{+3\circ}_{-4}) \ (M_{\odot})$	$23.2^{+3.3}_{-3.0}$	$35.4^{+5.0}_{-4.6}$

Notes. ^(a) Note that T_0 corresponds to the eclipse of the B0.5Ia⁺ emission-line star.

Ritchie et al. (2010)

Magnetar: CXOU J164710.2-455216

(Muno et al. 2006)

"How Much Mass Makes a Black Hole?"

(ESO PR #1034, August 2010)

Ritchie et al. (2010) found progenitor > 40 M_{o}

Object [+ Cluster]	M _{prog} /M⊙	Remnant	<i>B</i> (×10 ¹⁴ G)	Ref.
SGR 1806 – 20	48 ⁺²⁰ _8	Magnetar	2-8	1,2
CXO J164710.2-455216 [Wd 1]	40 ± 5	Magnetar	<1.5	3
IGR J18135-1751 [Cl 1813 – 18]	20-30	Pulsar Wind Nebula	0.03	4,5,6
AX J1838-0655 [RSGC1]	18 ± 2	Pulsar Wind Nebula	0.02	7,8
SGR 1900+14	17 ± 1	Magnetar	2-8	This work, 9

References. (1) Bibby et al. 2008; (2) Kouveliotou et al. 1998; (3) Muno et al. 2006; (4) Helfand et al. 2007; (5) Messineo et al. 2008; (6) Gotthelf & Halpern 2009; (7) Davies et al. 2008; (8) Gotthelf & Halpern 2008; (9) Kouveliotou et al. 1999.

ESO/L. Calçada

Davies et al. (2009)

Conclusions

- Lack of accurate fundamental parameters
- Eclipsing binaries provide model constraints
- Westerlund | results:

• Wd13 (28 +38 M_o): confirm & extend high mass for magnetar progenitor (>40 M_o)

• WR77o: very massive companion (~40 M_o)

• Future: independent distance to Wd1 (3.5-5kpc)

• Stay tuned: Arches & Quintuplet clusters, G305, LMC, SMC, M33, IC 1613, NGC 6822