
Hall equilibria and stability 
of magnetic field structure 

in neutron star crusts

K. Gourgouliatos (Purdue University)

Collaborators: A. Reisenegger (Pontificia Universidad Catolica de Chile), 
J. Hoyos (Universidad de Madellin, Colombia), J. Valdivia (Universidad 
de Chile), P. Marchant (Pontificia Universidad Catolica de Chile) and 
M. Lyutikov (Purdue University)



Outline



Outline

Hall evolution



Outline

Hall evolution

Equilibria Solutions



Outline

Hall evolution

Equilibria Solutions

Differences between Hall equilibria and MHD



Outline

Hall evolution

Equilibria Solutions

Differences between Hall equilibria and MHD

Stability



Neutron Star Crust



Neutron Star Crust

The crust is the outer solid surface layer 
(1-2 km thick) of the neutron star



Neutron Star Crust

The crust is the outer solid surface layer 
(1-2 km thick) of the neutron star

The magnetic properties can be described as 
those of a solid with an ion lattice and free 
electrons



Neutron Star Crust

The crust is the outer solid surface layer 
(1-2 km thick) of the neutron star

The magnetic properties can be described as 
those of a solid with an ion lattice and free 
electrons

A stable MHD equilibrium is not necessarily a 
stable Hall equilibrium 



Neutron Star Crust

The crust is the outer solid surface layer 
(1-2 km thick) of the neutron star

The magnetic properties can be described as 
those of a solid with an ion lattice and free 
electrons

A stable MHD equilibrium is not necessarily a 
stable Hall equilibrium 



Hall Evolution 
(Electron MHD)



Hall Evolution 
(Electron MHD)

In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):



Hall Evolution 
(Electron MHD)

In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):

The electric current is carried by free electrons



Hall Evolution 
(Electron MHD)

In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):

The electric current is carried by free electrons

Any excess of Lorentz force is balanced by the lattice forces, 
breaking of the crust is also possible



Hall Evolution 
(Electron MHD)

In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):

The electric current is carried by free electrons

Any excess of Lorentz force is balanced by the lattice forces, 
breaking of the crust is also possible

The description is Kinetic and not Dynamic (Induction equation)



Hall Evolution 
(Electron MHD)

In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):

The electric current is carried by free electrons

Any excess of Lorentz force is balanced by the lattice forces, 
breaking of the crust is also possible

The description is Kinetic and not Dynamic (Induction equation)

It is the appropriate description for neutron star crusts 
(Goldreich & Reisenneger 1994)



Hall Evolution 
(Electron MHD)

In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):

The electric current is carried by free electrons

Any excess of Lorentz force is balanced by the lattice forces, 
breaking of the crust is also possible

The description is Kinetic and not Dynamic (Induction equation)

It is the appropriate description for neutron star crusts 
(Goldreich & Reisenneger 1994)

 In MHD 



Hall Evolution 
(Electron MHD)

In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):

The electric current is carried by free electrons

Any excess of Lorentz force is balanced by the lattice forces, 
breaking of the crust is also possible

The description is Kinetic and not Dynamic (Induction equation)

It is the appropriate description for neutron star crusts 
(Goldreich & Reisenneger 1994)

 In MHD 
  In equilibrium: Lorentz force, pressure gradient and gravity add 

up to zero



Hall Evolution 
(Electron MHD)

In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):

The electric current is carried by free electrons

Any excess of Lorentz force is balanced by the lattice forces, 
breaking of the crust is also possible

The description is Kinetic and not Dynamic (Induction equation)

It is the appropriate description for neutron star crusts 
(Goldreich & Reisenneger 1994)

 In MHD 
  In equilibrium: Lorentz force, pressure gradient and gravity add 

up to zero
  A purely poloidal or toroidal field are not stable configurations 

(Prendergast 1956 and simulations by Braithwaite & Spruit 2006a,b)
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The equilibrium equation resembles the 
Grad-Shafranov (Shafranov 1966) equation

We can find analytical solutions in the axially 
symmetric case for appropriate choices of F

 Here we shall focus on solutions 
corresponding to purely poloidal fields
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Stability: Hall vs MHD

The stability of magnetic configurations under 
Hall evolution is very different from that of MHD

MHD: Dynamical evolution, force equilibrium, 
variation principle

In Hall there are no forces to be accounted 
for, kinetic evolution 
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Analytical Arguments
There is exchange of energy between the 
background field and the perturbation

Necessary condition for 
instability is dW/dt>0

- The first term is the exchange of energy between B and b
- The second term is the exchange of energy between the 
crust and the external medium
- In the solution presented the first term is zero, the second 
can be positive for an appropriate choice of perturbation
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Evolutionary Scenario

When a neutron star forms the fluid freezes to a solid crust

The previous MHD equilibrium is not a (stable) Hall equilibrium, as 
new (lattice) forces appear (Rheinhadt & Geppert 2002, Pons & 
Geppert 2007)

The evolution leads towards a stable poloidal field connected to an 
external dipole

Magnetar activity may be the outcome of the process of 
transforming an MHD equilibrium to a Hall equilibrium which loads 
the magnetosphere with magnetic energy and helicity (i.e. Thompson 
& Duncan 1993, 1995)
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Conclusions

We have found analytical solutions for Hall 
equilibrium

Analytical arguments and preliminary 
simulations suggest that they are stable 
configurations

The energy released in the transition from 
MHD to Hall equilibrium may be related to 
magnetar activity



Thanks!


