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@ The crust is the outer solid surface layer
(1-2 km thick) of the neutron star

@ The magnetic properties can be described as
those of a solid with an ion lattice and free
electrons

@ A stable MHD equilibrium is not necessarily a
stable Hall equilibrium
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@ In Hall evolution (reviews by: Kingsep (1987), Gordeev (1994)):
® The electric current is carried by free electrons

@ Any excess of Lorentz force is balanced by the lattice forces,
breaking of the crust is also possible

@ The description is Kinetic and not Dynamic (Induction equation)

@ It is the appropriate description for neutron star crusts
(Goldreich & Reisenneger 1994)

@ In MHD
@ In equilibrium: Lorentz force, pressure gradient and gravity add
up to zero

@ A purely poloidal or toroidal field are not stable configurations
(Prendergast 1956 and simulations by Braithwaite & Spruit 2006a,b)
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@ The equilibrium equation resembles the
Grad-Shafranov (Shafranov 1966) equation

@ We can find analytical solutions in the axially
symmetric case for appropriate choices of F

® Here we shall focus on solutions
corresponding to purely poloidal fields






Poloidal equilibria

@ The field has to be connected with an
external dipole-type magnetic field, with
negligible toroidal component



Poloidal equilibria

@ The field has to be connected with an
external dipole-type magnetic field, with
negligible toroidal component

@ The field lines penetrating the crust should
not have a significant toroidal component



Poloidal equilibria

@ The field has to be connected with an
external dipole-type magnetic field, with
negligible toroidal component

@ The field lines penetrating the crust should
not have a significant toroidal component

@ We are looking for purely poloidal Hall
equilibria (a combination of poloidal-toroidal
field is more realistic)
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v = Q(P)rsinfe,

IxB+ S FnVP =0
47

LS O)(P) = cF(P)/(4me)

separable solution corresponds To an electron

fluid that performs solid body rotation

@ This solution easily matches with an external
dipole magnetic field
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the perturbation and the background field

@ Simulations



Stability: Hall vs MHD



Stability: Hall vs MHD

@ The stability of magnetic configurations under
Hall evolution is very different from that of MHD



Stability: Hall vs MHD

@ The stability of magnetic configurations under
Hall evolution is very different from that of MHD

@ MHD: Dynamical evolution, force equilibrium,
variation principle



Stability: Hall vs MHD

@ The stability of magnetic configurations under
Hall evolution is very different from that of MHD

@ MHD: Dynamical evolution, force equilibrium,
variation principle

@ In Hall there are no forces to be accounted
for, kinetic evolution
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Analytical Arguments

V xXB < B — () There is exchange of energy between the
o background field and the perturbation

Necessary condition for
instability is dW/d1>0

- The first term is the exchange of energy between B and b
- The second term is the exchange of energy between the
crust and the external medium

- In the solution presented the first term is zero, the second
can be positive for an appropriate choice of perturbation
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@ Preliminary simulations show that this field is
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® Combined with analytical arguments for the
stability of the “volume part” the exchange is
not so important

@ Most (95%) of the magnetic energy is in the
crust
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Evolutionary Scenario

When a neutron star forms the fluid freezes to a solid crust

The previous MHD equilibrium is not a (stable) Hall equilibrium, as
new (lattice) forces appear (Rheinhadt & Geppert 2002, Pons &
Geppert 2007)

The evolution leads towards a stable poloidal field connected to an
external dipole

Magnetar activity may be the outcome of the process of
transforming an MHD equilibrium to a Hall equilibrium which loads
the magnetosphere with magnetic energy and helicity (i.e. Thompson
& Duncan 1993, 1995)
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Conclusions

@ We have found analytical solutions for Hall
equilibrium

@ Analytical arguments and preliminary
simulations suggest that they are stable
configurations

@ The energy released in the fransition from
MHD to Hall equilibrium may be related to
magnetar activity






