

Testing Photometric Metallicities with Milky Way Dwarf Spheroidal Companions

Sophia Lianou University of Heidelberg

Eva Grebel (ARI) & Andreas Koch (LSW)

Motivation

Several ways to derive metallicities of individual stars using spectroscopic or photometric methods

Photometric metallicities provide the only way to derive stellar metallicities for more distant galaxies

➢ With HST at the distance of the Virgo cluster − brightest red giant stars have been resolved (e.g., Caldwell 2006)

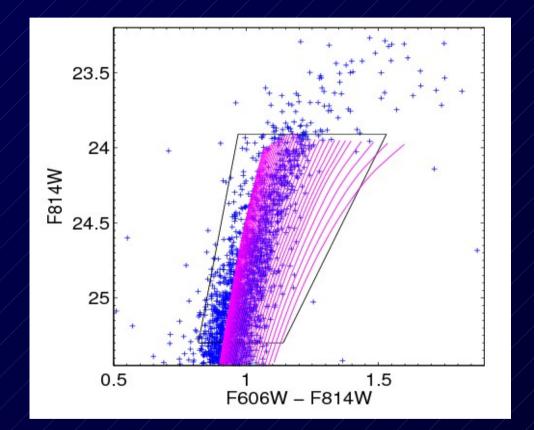
It is important to explore how reliable the photometric method of deriving metallicities can be

Stellar Metallicities

Spectroscopy of red giant branch stars:

- \rightarrow usually Ca II triplet (e.g., Starkenburg et al. 2010)
- \rightarrow medium resolution and spectral synthesis (Kirby et al. 2008)
- \rightarrow high resolution (e.g., Koch et al. 2008; Battaglia et al. 2008)

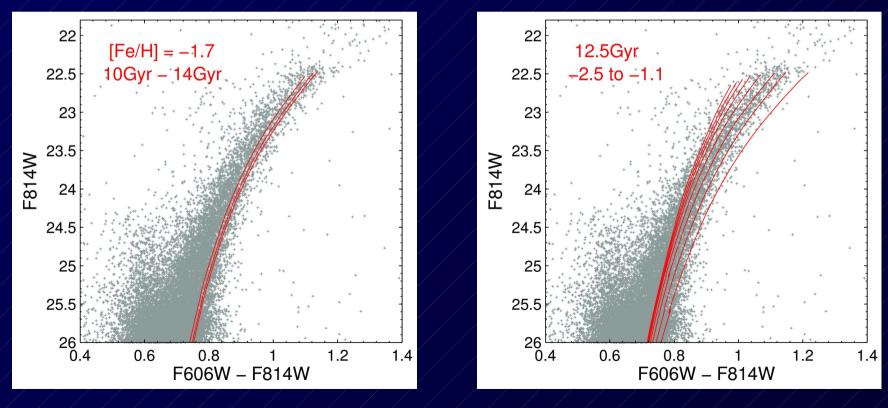
 Photometry of red giant branch stars
→ mean color of the red giant branch stars at M_I ~ -3 mag (Da Costa & Armandroff 1990; Lee et al. 1993)


- \rightarrow linear interpolation between isochrones
- \rightarrow application in old stellar populations (> 10Gyr)

Photometric Metallicities Method

Assume isochrones of a single old age (~12.5 Gyr)

Assume a range in metallicities (from -2.5 to -0.5 dex in [Fe/H])


- Linear interpolation between Dartmouth isochrones (Dotter et al. 2007, 2008)
- Assign to each star a global metallicity [Fe/H]

On the "Old Single Age" Assumption

All Local Group dwarf galaxies so far studied contain old stars (Grebel & Gallagher 2004)

Red giant branch width: metallicity spread rather than age spread

<u>Is the "Old Single Age" Assumption Valid?</u>

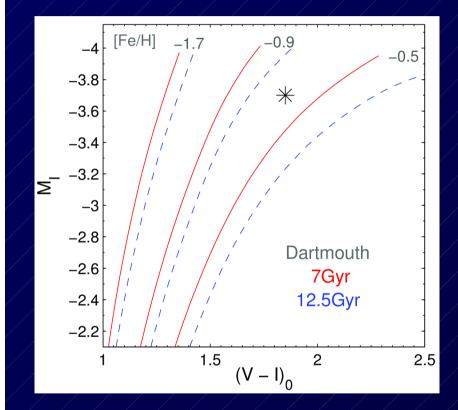
Dwarf spheroidals may have an age spread of ~3Gyr (e.g., Marcolini et al. 2008)

An age spread from 10 to 13 Gyr does not significantly alter the derived metallicities assuming a constant age (e.g., Lianou et al. 2010)

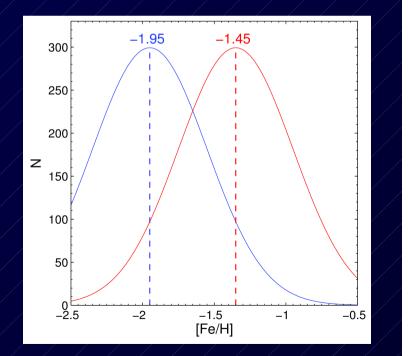
The single age for old stellar populations gives results consistent ~0.1dex more metal-rich when using 10Gyr isochrones

<u>Is the "Old Single Age" Assumption Valid?</u>

Young stars: age < ~1Gyr Intermediate-age stars: ~1Gyr < age < ~10Gyr Old stars: age > ~10Gyr


Many Local Group dwarf spheroidals contain stars as young as 100Myr (e.g., Fornax: Grebel & Stetson 1999)

Implication for the red giant branch: not purely old stars with intermediate-age stars contaminating it


The old isochrone age assumption is not necessarily valid in the case of dwarfs galaxies with complex <u>Star Formation Histories</u> (SFH) due to age-metallicity degeneracies

<u>Age – Metallicity Degeneracy</u>

Galaxies —> mixture of stellar populations of different ages

➤ Metallicity Distribution Function: expect a "Metal–poor bias" →

Testing Photometric Metallicities

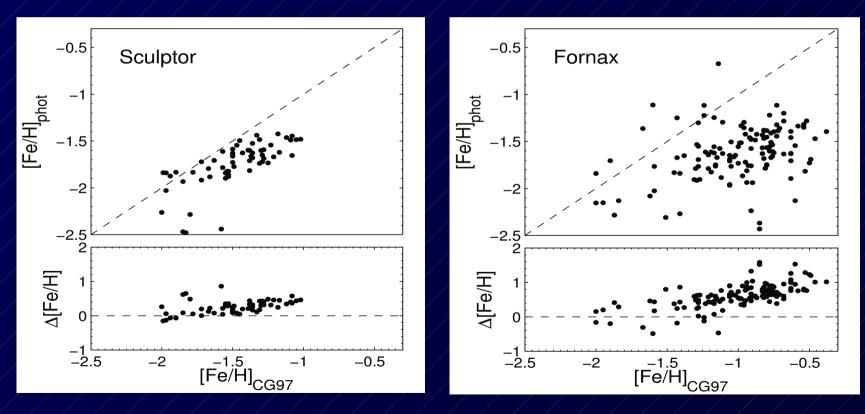
5 Milky Way dwarf spheroidal companions with variety in SFHs

→Why Milky Way dwarfs? \rightarrow Nearby enough to have accurate SFH, as well as spectroscopic metallicity measurements

Compare metallicities derived from two independent methods:
– Spectroscopic (CaT and MRS; literature)
– Photometric (our work)

Comparing Metallicities: Mean Values

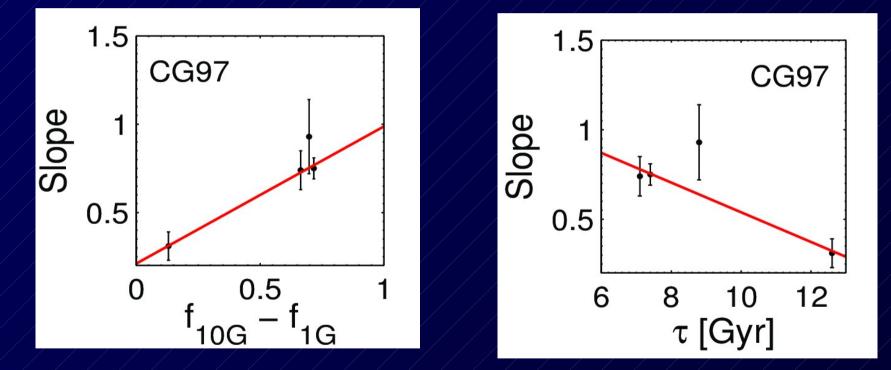
First compare the global mean values as derived from each method


 For those dwarfs with a small fraction of intermediate-age stars (Sextans or Sculptor; < ~15%), mean metallicities agree within ~0.1 dex

— For those dwarfs with a higher fraction of intermediate-age stars, the discrepancy between spectroscopic and photometric metallicities is larger, of the order of 0.4 dex

Comparing Metallicities: Common Stars

There is a relatively good agreement between -2 to -1.5 dex


Same trend in all of them: towards the metal-rich end, there is a high discrepancy between the results of the two methods

Hel.A.S. Ioannina 2011

Comparing Metallicities: Common Stars

▶ Increasing the intermediate-age of stars present, the slope of the residuals increases \rightarrow dependence on the SFH

(fractions f and mean stellar ages τ from Orban et al. 2008)

Conclusions

Between -2 to -1.5 dex good agreement independent of SFHs Overall, the more complex the SFH is, the higher the discrepancy

Estimating the fraction of intermediate-age stars present is important in order to quantify the amount of age-metallicity degeneracy present, affecting for instance the photometric metallicities

In more distant galaxies only the brightest stars can be resolved – thus one has to rely on the luminous asymptotic giant branch stars as tracers of the intermediate-age populations present

Calibrate the number of luminous asymptotic giant branch stars as a function of the fraction of intermediate-age stars present, with the latter derived from accurate SFHs (Lianou 2011, in prep)