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3D periodic orbits in the restricted four-body problem
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Abstract: One big body (Sun) of mass m1 and two other small bodies of masses m2 and m3
correspondingly, move in circular orbits keeping an equilateral triangle configuration, about the center
of mass of the system fixed at the origin of the coordinate system. A massless particle is moving under
the Newtonian gravitational attraction of the primaries and does not affect the motion of the three
bodies. Using the vertical-critical orbits of planar families of symmetric periodic orbits as starting
points, we determine and present in this paper, families of three-dimensional periodic solutions of the
problem. Characteristic curves of the 3D-families which emanate from the plane are presented. The
stability of every three-dimensional periodic orbit which numerically calculated is also studied.

1 Introduction

We consider that the dominant primary body m1, is on the negative x-axis at the origin of time and
the three point masses moving in circular periodic orbits around their center of mass. The equations
of motion of the massless fourth body referred to a synodic rotating coordinate system with the same
origin as the primaries are [2], [1],
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gravitational potential in synodic coordinates is given by the equation Ω = 1
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and a Jacobian type of integral of the problem is ẋ2 + ẏ2 + ż2 = 2Ω − C where C is the Jacobian
constant.

2 Results

In Fig. 1 (left) we present the network of all the families of the planar symmetric simple periodic
solutions, i.e. these having two perpendicular intersections with the x−axis per period for m1 = 0.99
and m2 = m3 = 0.005. Using a standard corrector-predictor procedure we calculated the family f1
which consists of retrograde periodic orbits around the primary bodies. The stability of these periodic
solutions are also computed and the arc of the stable periodic orbits are presented with red color
(Fig. 1 (left)). We calculated the vertical-critical periodic solutions and found that family f1 has five
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Figure 1: Left: The network of the families of the simple symmetric periodic orbits for m1 = 0.99
and m2 = m3 = 0.005. The small triangles indicate the five vertical-critical periodic orbits of family
f1. Right: The five three-dimensional families which emanate from the plane vertical critical periodic
orbits of family f1.

Figure 2: Left: Three-dimensional doubly-symmetric periodic orbits around the primary bodies. Mid-
dle: The same 3D-orbits without projections. Right: Characteristic curves of the 3D-family emanates
from the planar vertical-critical orbit f2v
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ones (small triangle in the same figure), namely f iv
1 , i = 1, . . . , 5. It is well known that these vertical-

critical orbits are starting points for the determination of the families of three-dimensional periodic
orbits. So, we calculated the five 3D families emanate from them. The first 3D family, emanates
from the vertical-critical periodic orbit f1v

1 , has members three-dimensional periodic orbits doubly
symmetric with respect to the x−axis and the xz plane. The second and the fifth 3D families have
orbits doubly symmetric with respect to xz plane and to the x−axis while the third is a 3D family
with periodic orbits symmetric with respect to the x−axis and the fourth one has three-dimensional
periodic orbits symmetric with respect to xz plane. Three of the 3D families go up until the parameter
z or the velocity ż become maximum and then go down again to the plane, namely on the equilibrium
point L2 (family f1v

1 ), on L1 (family f2v
1 ) and on point S (Fig. 1 (left)) of an other plane family (family

f3v
1 ). The other two 3D families go up and change multiplicity. In Fig. 1 (right) the three-dimensional

characteristic curves of the five families which emanate from the planar family f1 are illustrated. In
Fig. 2 we plot three dimensional periodic orbits of family f1v

1 with (left) and without (middle) their
projections. In Fig. 2 (right) the characteristic curves in the (x,C), (x, z), (x, T ) and (x, ẏ) planes, are
also illustrated. All the families have stable and critical 3D periodic orbits except family f4v

1 where is
entirely unstable.
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