A Data-Driven, Integrated Flare Model Based on Self-Organized Criticality

Michaila Dimitropoulou Kapodistrian University of Athens

11th Hellenic Astronomical Conference

Athens, 8 - 12 September 2013

L. Vlahos, University of Thessaloniki, Department of Physics, Thessaloniki, Greece M. Georgoulis, Research Center of Astronomy & Applied Mathematics, Academy of Athens, Greece

H. Isliker, University of Thessaloniki, Department of Physics, Thessaloniki, Greece

PhD Supervisor: Xenophon Moussas, University of Athens, Department of Physics, Athens, Greece

11th Hellenic Astronomical Conference

Athens, 8 - 12 September 2013 2

From the sandpile to the Sun... The BTW model The L

Bak, Tang & Wiesenfield _(1987)

The LH model

Lu, Hamilton (1991)

 $\bar{h}(t) = \frac{1}{4} [h(x+1,y,t) + h(x-1,y,t) + h(x,y+1,t) + h(x,y-1,t)]$

 $G(x, y, t) = h(x, y, t) - \bar{h}(t)$ $h(x, y, t) \rightarrow h(x, y, t) + 1$

 $G(x, y, t) > G_c$

h(x, y, t+1) = h(x, y, t) - 4 $h(x \pm 1, y, t+1) = h(x \pm 1, y, t) + 1$ $h(x, y \pm 1, t+1) = h(x, y \pm 1, t) + 1$

Control parameter Transition rules

Instability criterion

Relaxation rules

 $\Delta \mathbf{B}_i = \mathbf{B}_i - \frac{1}{6} \sum \mathbf{B}_{nn}$

SOC: Concept & misconceptions

Self-Organized Criticality: open systems self-organize in a statistical stationary state in which a phase transition far from equilibrium is undergone; by means of:

- slow-driving,
- critical threshold,
- time scale separation,
- metastability, and
- boundary dissipation

the dynamics of the system leads it to a critical state in which scale invariance is present in all the observables.

SOC Diagnostics:

- "control parameter": stabilization of mean value just below the critical threshold
- avalanches: well defined mean number in equal time intervals

long-term/extensive temporal/spatial two-point-correlations → scale invariance/self-similarity

long-term memory

fractality

power-law scaling

SOC in Solar Flares?

Crosby et al, 1993 (HXRBS/SMM)

Georgoulis et al, 2001 (WATCH/GRANAT)

The Static IFM (S-IFM)

Dimitropoulou et al., 2011

- Dataset: 11 AR photospheric vector magnetograms from IVM
 - spatial resolution of 0.55 arcsec/pixel
 - 180 azimuthal ambiguity removed (Non-Potential magnetic Field Calculation)
 - rebinned into a 32x32 grid

• Model:

EXTRA: MAGNETIC FIELD EXTRAPOLATOR Reconstructs the 3D configuration NLFF optimization (Wiegelmann 2008): Lorentz force + B divergence minimization HANDOVER to DISCO

RELAX: Magnetic Field Re-distributor (reconnection) Redistributes the magnetic field according to predefined relaxation rules (Lu & Hamilton 1991) HANDOVER to DISCO

DISCO: INSTABILITIES SCANNER

Identifies an instability when one site exceeds a critical threshold in the magnetic field Laplacian If YES, HANDOVER to RELAX If NO, HANDOVER to LOAD

LOAD:

Driver (photospheric convection / plasma upflows)

Adds a magnetic field increment of random magnitude (though obeying to specific "physically" imposed rules) to a random site of the grid, HANDOVER to DISCO

The physics behind the "S-IFM" (1)

1. EXTRA: a nonlinear force-free extrapolation module

$$L = \int_{V} w(x, y, z) [|\boldsymbol{B}|^{-2} | (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B}|^{2} + |\boldsymbol{\nabla} \cdot \boldsymbol{B}|^{2}] d^{3}x$$

✓ Lorentz force minimization

✓ Magnetic field divergence minimization

Wiegelmann, 2008

The physics behind the "S-IFM" (2)

2. DISCO: a module to identify magnetic field instabilities

Selection of critical quantity (magnetic field stress = magnetic field Laplacian):

$$G_{av}(\mathbf{r}) = |G_{av}(\mathbf{r})| \quad \text{where:} \quad G_{av}(\mathbf{r}) = B(\mathbf{r}) - \frac{1}{nn} \sum_{nn} B_{nn}(\mathbf{r}) \quad (1)$$

✓ Why this? It favors reconnection

Is there an underlying physical meaning behind this selection?

Threshold determination:

 $\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{V} \times \boldsymbol{B}) + \eta \nabla^2 \boldsymbol{B}$

$$G_{cr} = 10G$$

$$\nabla^2 \boldsymbol{B}(\boldsymbol{r}) = (\nabla^2 B_x)\hat{\mathbf{i}} + (\nabla^2 B_y)\hat{\mathbf{j}} + (\nabla^2 B_z)$$

Induction Equation

central finite difference

$$\nabla^2 \boldsymbol{B}(\boldsymbol{r}) \simeq \sum_{nn} \boldsymbol{B}_{nn}(\boldsymbol{r}) - nn \boldsymbol{B}(\boldsymbol{r})$$

(1)

 $\nabla^2 \boldsymbol{B}(\boldsymbol{r}) \simeq -nn \boldsymbol{G}_{av}(\boldsymbol{r})$

Resistive term dominates, in the presence of local currents

The physics behind the "S-IFM" (3)

3. RELAX: a redistribution module for the magnetic energy

Selection of redistribution rules:

V

$$B^+(r) \rightarrow B(r) - \frac{6}{7}G_{av}(r)$$
 and $B^+_{nn}(r) \rightarrow B_{nn}(r) + \frac{1}{7}G_{av}(r)$

Lu & Hamilton 2001

✓ Do these rules meet basic physical requirements, like magnetic field zero divergence?

$$\nabla \cdot \boldsymbol{B}^{+}(\boldsymbol{r}) \simeq \frac{1}{7} \nabla \cdot \boldsymbol{B}(\boldsymbol{r}) - \frac{1}{7nn} \nabla \cdot \boldsymbol{B}_{nn}(\boldsymbol{r})$$

$$\nabla \cdot \boldsymbol{B}_{nn}^{+}(\boldsymbol{r}) \simeq \frac{1}{7} \nabla \cdot \boldsymbol{B}(\boldsymbol{r}) + \frac{1}{7nn} \nabla \cdot \boldsymbol{B}_{nn}(\boldsymbol{r})$$

$$\nabla \cdot \boldsymbol{B}(\boldsymbol{r}) \simeq \nabla \cdot \boldsymbol{B}_{nn}(\boldsymbol{r}) \simeq 0$$

NLFF extrapolation

 $\nabla \cdot \boldsymbol{B}^+(\boldsymbol{r}) \simeq \nabla \cdot \boldsymbol{B}^+_{nn}(\boldsymbol{r}) \simeq 0$

Magnetic field retains divergence freedom

The physics behind the "S-IFM" (4)

4. LOAD: the driver

Selection of driving rules:

1.Magnetic field increment perpendicular to existing site field

 $B(r) \cdot \delta B(r) = 0$

- localized Alfvenic waves - convective term of induction eq: $\nabla \times (V \times B)$

2.Slow driving

 $\delta B(r)$ $=\epsilon, \epsilon < 1$

- the slower the driving, the longer the average waiting time

Divergent free magnetic field during the driving process 3.

- tolerate a 20% departure

 $\nabla \cdot (B(r) + \delta B(r)) = 0$ - only a first degree approximation \rightarrow need to monitor the departure from the divergence-free condition:

$$WNDB = \frac{|\nabla \cdot B|}{\sqrt{3}\sqrt{(\frac{\partial B_x}{\partial x})^2 + (\frac{\partial B_y}{\partial y})^2 + (\frac{\partial B_z}{\partial z})^2}}$$

"S-IFM" results (1)

		Double Po	wer Law fit		Power La	aw with
	Flat	PL	Steep) PL	Exponentia	l Rollover
AR	PL Index	Probability	PL Index	Probability	PL Index	Probability
9415					-1.42 ± 0.18	0.95
9635	-2.29 ± 0.19	0.96	-5.28 ± 0.42	0.95		
9661					-0.26 ± 0.05	0.94
9684					-0.91 ± 0.09	0.95
9845					-1.12 ± 0.06	0.95
10050	-1.80 ± 0.18	0.98	-4.03 ± 0.29	0.95		
10247					-1.27 ± 0.07	0.95
10306					-1.27 ± 0.09	0.94
10323					-0.98 ± 0.05	0.95
10488	-1.60 ± 0.16	0.94	-3.64 ± 0.19	0.94		
10570					-0.83 ± 0.07	0.95
MEAN	-1.90		-4.32		-1.01	
σ^2	0.35		0.86		0.36	

мачанана	manananana a	манананана					
FLARE	TOTAL ENER	GY (model)					
Single Power Law fit							
AR	PL Index	Probability					
9415	-1.50 ± 0.13	0.95					
9635	-2.22 ± 0.19	0.98					
9661	-1.27 ± 0.05	0.99					
9684	-1.43 ± 0.07	0.99					
9845	-1.69 ± 0.17	0.95					
10050	-1.45 ± 0.13	0.95					
10247	-1.89 ± 0.17	0.98					
10306	-1.23 ± 0.08	0.99					
10323	-1.45 ± 0.16	0.98					
10488	-1.54 ± 0.13	0.95					
10570	-1.45 ± 0.08	0.99					
MEAN	-1.56						
σ^2	0.28						

<u>9-0-0-0-0-</u>	Marara-a-a-a-	Manakara Karas							
FLAR	FLARE PEAK ENERGY (model)								
Single Power Law fit									
AR	PL Index	Probability							
9415	-1.84 ± 0.18	0.95							
9635	-2.62 ± 0.17	0.97							
9661	-1.42 ± 0.15	0.98							
9684	-1.70 ± 0.17	0.97							
9845	-1.85 ± 0.12	0.95							
10050	-1.63 ± 0.15	0.95							
10247	-2.15 ± 0.12	0.98							
10306	-1.61 ± 0.16	0.97							
10323	-1.72 ± 0.17	0.97							
10488	-1.59 ± 0.14	0.95							
10570	-1.63 ± 0.15	0.98							
MEAN	-1.80								
σ^2	0.33								

"S-IFM" results (3)

NOAA AR 10050

"S-IFM" results (4)

NOAA AR 10247

The Dynamic IFM (D-IFM)

• Dataset: 7 subsequent photospheric vector magnetograms from IVM (NOAA AR 8210)

- spatial resolution of 0.55 arcsec/pixel
- 180 azimuthal ambiguity removed (Non-Potential magnetic Field Calculation)
- rebinned into a 32x32 grid

							Dimitrop	oulou et al.	, 2013
Magnetogram no (i)		D-IFM Time	<u>t (sec)</u>				VERSION	WINDOWSKI -	VEROPERATION
	18:58	0		6666666666		9999999999999	0000000	404040404040	
2	19:43	2700	Index	Flare Start Time	e(UT) 1	Flare Peak Time (UT	7) Flare En	nd Time (UT)	Flare Class
5	20:14	4560	1	20:08		20:30	2	20:35	C2.8
4	21:20	8520	2	21:40 22:36		21:51 22:54	2	3:08	M1.2
5	22:08	11400		22.30					
0 7	20.38	15200	L					9338333	888888
/	23:10	15480	\			899888888			833533
		Σ	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7
EXTR		<u>SC</u>			~			*	
A RELA X		soc:i,0	-	-	-	*	*	•	*

The Dynamic IFM (D-IFM)

INTER:

Driver (photospheric convection / plasma upflows)

Adds magnetic increments in multiple sites following a spline interpolation from one magnetic snapshot to the next HANDOVER to DISCO

RELAX:

Magnetic Field Re-distributor (reconnection) Redistributes the magnetic field according to predefined relaxation rules (Lu & Hamilton 1991)

HANDOVER to DISCO

Dimitropoulou et al., 2013

50 additional S-IFM avalanches

DISCO: INSTABILITIES SCANNER Identifies an instability when one site exceeds a critical threshold in the magnetic field Laplacian If YES, HANDOVER to RELAX If NO, HANDOVER to INTER

16236- 7- member SOC groups i = 0,1,2,...,6 j = 0, 1,2,...16235 90971 avalanches

The physics behind the "D-IFM"

1. INTER: a magnetic field interpolator acting as driver

- ✓ Cubic spline interpolation for all transitions SOC:i,j \rightarrow SOC:i+1,j of the same sequence j
- Interval τ between 2 interpolation steps:
 - ✓ 32x32x32 grid dimensions
 - ✓ IVM spatial resolution 0.55 arcsec/pixel
 - ✓ pixel size = 8.8 arcsec
 - ✓ grid site linear dimension = 6.4Mm
 - ✓ Alfven speed (1st approximation, coronal height) = 1000km/s
 - ✓ T = 6.4 sec
- ✓ Multisite driving

 \checkmark

- ✓ No avalanche overlapping
- MHD timestamps (t) on the avalanche onset
- ✓ Instant relaxation (MHD time t stops)

k	$SOC:i, j \rightarrow SOC:i+1, j$	$t_{(SOC'_{i+1},i)} - t_{(SOC'_{i},i)}$ (sec)	St
1	$1 \rightarrow 2$	2700	421
2	$2 \rightarrow \overline{3}$	1860	290
3	$3 \rightarrow 4$	3960	618
4	$4 \rightarrow 5$	2880	450
5	$5 \rightarrow 6$	1800	281
6	$6 \rightarrow 7$	2280	356

Monitoring of the magnetic field divergence

$$WNDB = \frac{|\nabla \cdot B|}{\sqrt{3}\sqrt{(\frac{\partial B_x}{\partial x})^2 + (\frac{\partial B_y}{\partial y})^2 + (\frac{\partial B_z}{\partial z})^2}}$$

"D-IFM" results (1)

✓ Is B retained nearly divergent-free?

✓ How does the driver behave?

17

"D-IFM" results (2)

Conclusions

Why IFM?

- ✓ Data-driven
- ✓ Physical units for energies (peak and total)
- ✓ Physical units for the MHD time-scale (D-IFM)
- ✓ Attempts to simulate physical processes:
 - ✓ Alfvenic waves / plasma upflows
 - ✓ Diffusion
 - ✓ Data-based driving mechanism (D-IFM)
- ✓ Attempts to fulfill principal physical requirements (zero B divergence)

SOC CA models complement the MHD approach, by reproducing the global statistics of the physical processes at play