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Introduction

Our presentation deals with a new property which has been 
observed  for the first time (Kalvouridis, 2004) in the x-C 
diagrams during the investigation of the planar motion of a 
small body in the gravitational force field created by a regular

 polygon configuration of N bodies. 



A brief description of the restricted (N+1)-body 
regular polygon model

 (Ring-Problem))

TheThe
 

configurationconfiguration
 

ofof
 

thethe
 

regular regular 
polygonpolygon

 
problemproblem

 
ofof

 
(N+1) (N+1) bodiesbodies

 ν=Ν-1 of
 

the
 

bodies-members
 

of
 the

 
system

 
are spherical, homoge-

 neous
 

with
 

equal
 

masses
 

m, and
 

are 
located

 
at

 
the

 
vertices

 
of

 
an

 
imagi-

 nary
 

regular ν-gon, while
 

the
 

Νth
 body

 
has a different

 
mass

 
m0

 

and
 

is
 located

 
at

 
the

 
mass

 
center

 
of

 
the

 system. 
This

 
formation

 
rotates

 
around

 
its

 mass
 

center
 

with
 

constant
 

angular 
velocity, so that

 
all

 
the

 
primaries

 
are 

in relative
 

equilibrium. It
 

has been
 proved

 
(

 
Vanderbei, R.J., Kolemen, 

E. (2007)) that
 

this
 

state
 

may exist
 when

 
ν>6.

A small
 

body
 

S , natural or
 artificial, moves

 
under

 
the

 
influence

 of
 

all
 

the
 

primaries
 

of
 

the
 

system
 

yet
 having

 
no effect

 
on

 
their

 
motion.
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POST-NEWTONIAN POTENTIALS


 

In order to explain the motion of the apsidal line of Moon, Newton added 
a corrective inverse cube term of the form :

tto his famous inverse square law of gravitation (Principia, Book I, Article 
IX, Proposition XLIV, Theorem XIV, Corollary

 
2).

The corrective term  proposed by Manev


 

A similar adjustment was proposed by Manev
 

in 1924 in order to explain 
some relativistic effects without using the theory of relativity, as well as 
phenomena like the radiation pressure and the oblateness

 
of the bodies.
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The corrective term inserted by Newton in the expression of the law of gravitation



The ν
 

peripheral bodies create Newtonian force fields
The central primary creates a Manev-type potential : 

2

1 B- -
r r

where
 

: B = e α

Parameters of the problem

The improved version of the ring problem where the central body The improved version of the ring problem where the central body 
creates a creates a ManevManev

 
––type potentialtype potential

COORDINATE SYSTEMS
 Inertial coordinate system Oξηζ

 centered at the mass center O of the 
primaries’

 
formation. 

 Synodic
 

system Oxyz
 

rigidly attached 
to the primaries which rotates with 
constant angular velocity, here taken 
as ω=1.

B is
 

expressed
 

in length
 

units, a is
 the side of the regular ν-gon

 
and e 

is a dimensionless
 

coefficient

Manev’s
 

parameter e of the corrective term  (small real values)

 number
 

ν
 

of
 

the
 

peripheral
 

primaries
 

(
 

positive integer
 

values)

mass
 

parameter
 

β=m0

 

/m (β>0 , positive real values)
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Dimensionless equations of  motion
 

in the
 

synodic
 

system Οxyz

2 2 2x + y + z = 2U(x,y,z )-C  

 or = x, y, z

 i i ir = x - x , y - y , z distances
 

of
 

the
 

particle
 

from
 

the
 

central and
 

the
 peripheral

 
primaries

 
respectively

After
 

normalization
 

of
 

the
 

physical
 

quantities

    
x y z

∂U ∂U ∂U
x -2y = =U , y+2x = =U , z = =U

∂x ∂y ∂z

 
2ν

i=2

sin (π ν)Λ =
sin (i -1)(π ν)

M = 2sin(π ν)

Jacobian-type
 

integral of
 

motion

 2 3∆ = M Λ +βΜ +2βeM



 Z.V.Curves:
Considering a third axis which counts the values of C, we obtain, for each 
zero-velocity diagram, a corresponding three-dimensional plot which is called 
zero-velocity surface of the particle planar motion

 
.

2U(x,y )=C

ZERO -
 

VELOCITY CURVES AND SURFACES IN THE PLANAR MOTION

FOR  THE GRAVITATIONAL CASE  ( e = 0 )

Αreas
 

of permitted motionZero-velocity curves

Zero-velocity

surface



 They are obtained by intersecting surface                       with plane
 

y=0
 They reveal the equilibria
 They limit the regions of the phase space of initial conditions where 
planar solutions exist.

The diagrams
 

(x, C)
 

when e=0

C = C(x, y)
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The
 

colored
 

regions, are
 

the
 

regions
 

of
 the non-permitted

 
motion
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The zero-velocity curves of the x-C diagrams for a given ν

 
and y=0, intersect in 

two points (k, k')
 

which are called focal points (Kalvouridis
 

2004).


 
If ν

 
is odd all the types of equilibria

 
appear while if ν

 
is even only the collinear 

equilibria
 

appear.
The coordinates of these points do not depend on the value of β.

Focal points  in the gravitational case

ν=7 ,  e=0
 

, various values of β ν=8 ,  e=0
 

, various values of β



Collinear and triangular focal points


 
We have observed that along the directions of the bisectors of the angles 
formed by the central primary and two successive peripheral primaries, 
lie the k'-type focal points (triangular focal points), while along the 
directions of the radii which connect the central primary to a peripheral 
one lie the k-points (collinear focal points). 


 

When ν
 

is odd, two focal points, one collinear (k) and one triangular (k') 
with different coordinates appear on the (x,C) diagram.


 

When ν
 

is even, then, because we use the line which connects the central 
to a peripheral primary as the x-axis, both focal points are collinear (k-

 points). 

ν=7 ν=8



x

y

C

The focal curve of the zero-velocity surface 
C=C(x,y), around the central primary

Wavy form of the focal 
curve in the (x,y,C) space

Projection of the focal curve on the Cy-plane



The zero-velocity surfaces in the 
case where e<0

 A “folding”
 

of the central “chimney”
 that surrounds the central primary, is 

formed



The diagrams
 

(x, C) when e<0

The
 

colored
 

regions, are
 

the
 

regions
 

of
 non-permitted

 
motion



We assume that the parts of two zvc
 

which evolve in the neighborhood of the 
central primary and are drawn by means of the Jacobian-type integral of motion for 
a given mass parameter β

 
and two different values of parameter e, intersect. Then, 

and provided that
 
, the intersection points (focal points) of the two zvc

 
will 

have the same coordinates x,y
 

and C. Based on this property, we have found that 
the focal points satisfy the relation,

Focal points and focal curve when parameter β
 remains constant

 
and parameter e varies.

 The function Fβ
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The relation above does not depend on e.
The focal points are roots of the above relation and belong to a

 continuous 3D curve (in the (x,y,C) space), the focal curve.

0r ≠0



Superposition of the parts of the (x,C) diagrams near 
the central primary for a given value of β

 and various values of e



Wavy form of the focal 
curve in the (x,y,C) space

Projection of the focal 
curve on the xy-plane

A draft sketch of the focal 
curve
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As in the previous case, we assume that the parts of two zvc
 

which evolve in the 
neighborhood the central primary and are drawn by means of the Jacobian

 
type 

integral of motion for a given Manev
 

parameter e and two different values of 
parameter β, intersect. Then, and provided that

 
, the intersection points (focal 

points) of the two zvc
 

will have the same coordinates x,y
 

and C. Based on this 
property, we have found that in this case, the focal points satisfy the relation,

Focal points and focal curves when parameter e
 remains constant and parameter β

 
varies.                

The function
 

Fe
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The relation above does not depend on β.
The focal points are roots of the above relation and belong to a

 
continuous 3D 

curve (in the (x,y,C) space), the focal curve.



Focal points for a given value of e                       
and the corresponding function Fe

 

(x)

(I) Case where
 

e>0

Zero-velocity curves (x-C) and focal points 
for ν=7, e=0.05 , y=0 and various values of 

mass parameter β.
The function Fe

 

(x) for 
various values of  β



(II) Case
 

where e<0

e = - 0.11804
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Evolution of the focal points with parameter e for ν=7 and y=0



The zero-velocity 
surface near the 
central primary 

when e<0 and the 
two focal curves

Detail of the external focal curve

Detail of the internal focal curve

Projection of the 
focal curve on the 

xy-plane



Common intersection points of functions
 

Fβ
 

and  Fe

We also found that functions FWe also found that functions Fββ

 

and Fand Fee

 have  common intersection points  in have  common intersection points  in 
the plane xthe plane x--F which for a given F which for a given νν

 satisfy the relation satisfy the relation ,,

 Which is the equation of a circle.Which is the equation of a circle.


 
These points do not depend on These points do not depend on 

either parameters either parameters ββ
 

or e and  only or e and  only 
depend on the number depend on the number νν

 
of the of the 

peripheral primariesperipheral primaries. . 

0
1r =
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Further investigation of the focal points and curves in 
improved ring-type models

Recently, we have investigated a more general version 
of the above model where besides the central primary 
with Manev

 
parameter e, all the peripheral primaries 

create a Manev
 

potential with a  new  parameter e' 
(positive or negative) common for all the peripheral 
primaries.
We have found that in this case, the focal points and 

curves appear not only around the central primary, but 
also in the parts of the zero-velocity surface C=C(x,y) 
which evolves around each peripheral primary. 
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