Transmission and conversion of magneto-acoustic waves in the quiet solar chromosphere.

I. Kontogiannis, G. Tsiropoula & K. Tziotziou

IASARS, NOA

Chromospheric fine structure and the magnetic field

50

40

Tsiropoula, G., Tziotziou, K., Kontogiannis, I., Madjarska, M. S., Doyle, J. G., Suematsu, Y., 2012, Space Science Reviews, Volume 169, Issue 1-4, pp. 181-244

The magnetic canopy

Observations

Dutch Open Telescope (DOT): Ηα (

HINODE/SP:

Hα (5 wavelengths along the profile)
(30 s cadence, 30 min time series, 0.1" resolution)
2 high resolution vector magnetograms
(0.32" resolution)

Wavelet Analysis

Global Wavelet Spectrum for every pixel of the FOV \rightarrow 2-d power maps:

3, 5 and 7 min power distribution in Ha chromosphere

(Kontogiannis. Tsiropoula, Tziotziou 2010, A&A, 510, A41)

Ha and chromospheric magnetic field

Calculating the height of the magnetic canopy

Magnetic field extrapolation (Pmag) *(current-free or potential field assumption)* (Schmidt 1964, Alissandrakis 1981)

Atmospheric model (Pgas) (Vernazza et al. 1981 (VAL)

Magnetic canopy: the height where $\beta \sim 1$ 30

(arcsec) 20

10

0

. .

3, 5 and 7 min power distribution in Hα chromosphere + canopy height

3, 5 and 7 min power distribution in Hα chromosphere + canopy height

<u>Conclusion</u>: Magnetic shadow and power halo phenomena in H α are due to the interaction between the acoustic oscillations and the magnetic canopy:

-Canopy Height < Formation Height \rightarrow Magnetic Shadow

-Canopy Height > Formation Height \rightarrow Power Halo

-The magnetic canopy is formed by the magnetic flux tubes that constitute mottles.

(Kontogiannis. Tsiropoula, Tziotziou & Georgoulis. 2010, A&A, 524, A12) flux tubes are probably the loci of mode conversion

These flux tubes are probably the loci of **mode conversion**

Acoustic oscillations and magneto-acoustic waves

p-modes or "5 min oscillations" (Leighton 1962)

 $f_0 > 5.2 \text{ mHz}$ (P < 3 min) \rightarrow vertical propagation (else evanescent)

But!!!

In Chromospheric Mottles: 5 min (Tziotziou et al. 2004, Tsiropoula et al. 2009)

How can long period waves propagate up to the chromosphere?

Inclined magnetic fields: increase the acoustic cut-off period (Michalitsanos 1973, Bel & Leroy 1977) "p-mode leakage" (De Pontieu et al. 2004), "ramp effect" "magneto-acoustic portals", (Jefferies et al. 2006)

 $f = f_0 \cos\theta$

Magneto-acoustic waves (pressure gradient and Lorentz Force):

$$\upsilon_{f} = \sqrt{\frac{1}{2} \left(\upsilon_{A}^{2} + c_{s}^{2} \right) + \frac{1}{2} \sqrt{\left(\upsilon_{A}^{2} + c_{s}^{2} \right)^{2} - 4 \cdot \upsilon_{A}^{2} \cdot c_{s}^{2} \cos^{2} \vartheta}}$$
$$\upsilon_{s} = \sqrt{\frac{1}{2} \left(\upsilon_{A}^{2} + c_{s}^{2} \right) - \frac{1}{2} \sqrt{\left(\upsilon_{A}^{2} + c_{s}^{2} \right)^{2} - 4 \cdot \upsilon_{A}^{2} \cdot c_{s}^{2} \cos^{2} \vartheta}}$$

In phase: fast mode/wave

In anti-phase: slow mode/wave

$$\upsilon_A = \frac{B}{\sqrt{\mu_0 \rho}} \quad c_s = \sqrt{\frac{\gamma \cdot P}{\rho}}$$

Wave propagation around the magnetic canopy (2-d model)

Two processes

Transmission to a slow magnetoacoustic wave (T, small α , low *f*)

Conversion to a fast magnetoacoustic wave

(C, large α , high f)

$$T = \exp(-\pi k h_s \sin^2 \alpha)$$

T + C = 1.

Schunker & Cally 2006, Cally 2007

Wave propagation around the magnetic canopy (2-d model)

1. Directional filtering of the waves above the canopy

- α) slow magneto-acoustic waves along the magnetic field lines
- β) reflection of fast magneto-acoustic waves towards the solar surface

Stangalini et al. 2011:

$$T' = T \cdot [1 - \exp(-\theta/\theta_0)] \cdot \cos\theta$$
Projection effects

2. Reduced travel times (phase differences) at the magnetic canopy due to partial conversion to fast magneto-acoustic waves.

Wave propagation around the magnetic canopy (5 and 7 min Power vs inclination)

Kontogiannis, Tsiropoula & Tziotziou (in preparation)

Wave propagation around the magnetic canopy (3 min Power vs inclination)

Kontogiannis, Tsiropoula & Tziotziou (in preparation)

Wave propagation around the magnetic canopy (Phase differences)

Very small phase differences \rightarrow large phase speeds

Lower coherence inside the rosette (non vertigal propagation)

Negative phase differences (possible downward propagation)

Wave propagation around the magnetic canopy (Phase differences)

No clear signs of wave propagation

At the canopy: Most power around smaller phase differences

<u>High frequencies:</u> Most power at negative phases (downward propagation)

<u>In summary:</u>

- 1. On the magnetic canopy, acoustic waves convert into slow and fast magneto-acoustic waves. The first ones propagate along the (slanted) magnetic field lines, while the latter vertical to the magnetic field and reflect to the photosphere.
- 2. H α magnetic shadow is a result of non-vertical propagation of the slow waves while power halo is due to the reflection of the fast waves on the magnetic carpet.

Future Work:

- 1. Extend our study to upper and intermediate atmospheric layers using more spectral lines and bandpasses.
- 2. Study wave propagation along the magnetic field lines.
- 3. Estimate the flux carried by the slow waves to the upper chromospheric layers.
- 4. Compare the results with those of MHD simulations.

