

Slot Region Radiation Environment Models

I. Sandberg, I.A. Daglis (IAASARS/NOA, Phys/UoA)
D. Heynderickx (DHConsultancy)
H. Evans, P. Nieminen (ESA/ESTEC)

ESTEC/CONTRACT No.4000104839 (ESTEC/ITT AO/1-6700/11/NL/AT)

Outline

- Background
- Model characteristics
- The datasets
- SRREM model
- Examples
- Conclusions

Earth Radiation Belts SLOT SLOT REGION REGION

A radiation belt is a population of energetic particles stably-trapped by the magnetic field.

Trapped particles

Formation of the Slot Region

 $L[R_E]$: the distance from the center of the magnetic dipole to the equatorial point of the field line.

Standard picture: Whistler turbulence is responsible for formation of the *slot region*: in this range of *L*-values the amplification of the spectrum due to wave-particle resonance and wave accumulation causes the strongest pitch angle diffusion and thus the shortest life times.

NOOA/POES: 1979-1991 & 1992-2004

SRREMs

The Slot Region Radiation Environment Models (SRREMs) are data-based statistical models, that describe the particle radiation induced by high-energy trapped charged particles in radiation belt slot region for user-defined satellite orbit and space weather conditions.

SRREMs input-output

Input

- Mission orbit file
- Trapped particle
- [Space weather conditions]

Output

- Cumulative distribution functions of trapped particle omnidirectional fluxes [particle/cm2/sec/MeV/str] for different averaging times
- [The mean and variance of trapped, radiation differential flux and worst case values for different dynamic scenarios] (similar outputs for integral fluxes and for mission fluence)

e-SRREM

Electro	Centers	
0.100	0.183	0.135
0.183	0.337	0.249
0.337	0.612	0.456
0.612	1.13	0.837
1.13	2.08	1.53
2.08	3.81	2.82
3.81	7.00	5.17

Build SRREM database: workflow

SRREM

Datasets

SPACECRAFT	Orbit	Period	Perig x Apog [Km]	Incl.	Coverage	Instrum
CRRES	GTO	2h	305 x 33350	18	1990-1991	MEA
DEMETER	LEO	1,40 h	710	98	2004-2010	IDP
GIOVE-B	MEO	14,1 h	23200	56	2008-20112	SREM
INTEGRAL	HEO	72h	10000 x 152700	52	2002-	SREM
POLAR	PEO	17,5 h	7500 x 50800	86	1996-2008	CEPPAD
PROBA1	LEO	97min	570 x 640	98	2001-	SREM
ХММ	HEO	48h	7400 x 114000	70	1999-	ERMD
SAMPEX	LEO	96min	520 x 670	82	1992-2004	PET
AZUR	LEO	2h	384 x 3145	102.9	1969-1970	EI-88

Datasets coverage

Map data on SRREMs grid

For each dataset, we extract and map the omni-directional differential fluxes on a numerical grid defined by the *Roederer L parameter* and the *equatorial pitch angle* geo-magnetic coordinates.

$$(L^*, \alpha_{Eq}) = (B_{eq}R_E^2/J_{3}, B_{eq}/B_m)$$

The data on each SRREMs grid bin are time (1-day) averaged & the following variables are retained: the average: $\mu_{it,}$ the standard deviation: $\sigma_{it,}$ and the integration time: $\tau_{it,}$

Daily-averaged FEDO series

1991

SRREM time-series

- Energy re-bin data through piece-wise interpolation
- Calibrate re-binned data using CRRES/MEA dataset
- Merge all re-binned and calibrated datasets using as weighting factor the total integration (measurement) time on each grid bin and time-window.

- Derive the weighted average μ_{it} , the standard deviation σ_{it} and total measurement time τ_{it} for the resulted time series (SRREM series)
- Calculate histograms for each bin of SRREMs grid using the series of μ_i and $\mu_i + \sigma_i$.

e-SRREM database

FEDO

Dependence on averaging times

Run SRREM : workflow

Run SRREMs for satellite orbit

- The user-defined orbit is mapped on SRREMs coordinates: $(L_i^*, \alpha_{Eq k})$
- Create a **weighted sum** of the histograms of SRREM bins the orbit crosses with **weighting factor the time the satellite spends** on each bin
- The resulting histogram is used to calculate the **cumulative distribution function** for the whole orbit

Different averaging times

CONSULTANCY

IAASARS

Conclusions

- A new data-based statistical tool for the modeling of the Slot Region Radiation Environment has been developed
- SRREMs outputs provide significant information to scientists. model developers and satellite mission designers/operators
- The construction and the update of SRREM database is automated while new datasets can be easily ingested
- SRREMs can be easily extended to cover the whole RB region
- After the completion of independent validation studies SRREMs will become available through ESA Space Environment Information System

e-SRREM: model characteristics

- Magnetic coordinates: L* and α_{eq} (IRBEM lib)
- 30 linear bins for the range of L*=[1-6]
- 27 bins for the range of $\alpha_{eq} = 0 \pi/2$
- 7 log bins for *E_e*=0.1-7 MeV
- **300 log** bins for histograms

Electro	Electron Bins		
0.100	0.183	0.135	
0.183	0.337	0.249	
0.337	0.612	0.456	
0.612	1.13	0.837	
1.13	2.08	1.53	
2.08	3.81	2.82	
3.81	7.00	5.17	

