Flux Emergence of a Non-Twisted Magnetic Flux Tube

Syntelis Petros, Archontis Vasilis, Gontikakis Costis, Tsinganos Kanaris

University of Athens, RCAAM, University of St. Andrews

Research funding program Thalis: Hellenic National Network for Space Weather Research

11th HEL.A.S Conference, Athens, Greece, 9-12 September 2013

Overview

Introduction

- 1.Flux Emergence and observations
- 2. Numerical Model and Initial Conditions

The effect of twist

- 1. Highly twisted flux tube
- 2. Weakly twisted flux tube
- 3. Non twisted flux tube

Summary

Flux Emergence – Observations and Physics

Flux emergence is the process where magnetic fields emerge from the solar interior into the solar atmosphere and create dynamical phenomena.

2013-02-15 01:00 - 2013-02-16 01:00 SDO/HMI

- 1. Total pressure continuous $P_i + rac{B_i^2}{8\pi} = P_e$
- 2. Thermal equilibrium $T_i = T_e$
- 3. To rise, $P_i < P_g
 ightarrow
 ho_i <
 ho_e$
- 4. B tube becomes lighter and rises (Parker 1955)

Initial Conditions I – Twist

Emergence in a non magnetised atmosphere

$$B_y=B_0e^{-rac{r^2}{R^2}},\,R=450km$$
 $B_\phi=lpha rB_y$ $\Delta
ho=rac{p_t(r)}{p_{st}(z)}
ho_{st}(z)e^{-rac{y^2}{\lambda^2}},\,\lambda=10$ $B_0=2.8kG,\,eta=25$

Parameter \alpha: measure of twist per unit of length.

For a tube of radius R = 450km:

Highly twisted case:

$$\alpha = 22 \times 10^{-4} km^{-1} \rightarrow 45^{\circ} between B_{\phi}, B_{y}$$

Weakly twisted case:

$$\alpha = 55 \times 10^{-5} km^{-1} \rightarrow 14^{\circ} between B_{\phi}, B_{y}$$

Non twisted case:

$$\alpha = 0$$

Initial Conditions II - Stratification

Emergence in a non magnetised atmosphere

$$B_y=B_0e^{-\frac{r^2}{R^2}},\,R=450km$$
 $B_\phi=lpha rB_y$
 $\Delta
ho=rac{p_t(r)}{p_{st}(z)}
ho_{st}(z)e^{-rac{y^2}{\lambda^2}},\,\lambda=10$
 $B_0=2.8kG,\,eta=25$

LARE3D code: time dependent, resistive, compressible MHD with constant resistivity, joule and viscous heating.

Highly Twisted Flux Tubes – Basic Characteristics

The key characteristics of the emergence of a highly twisted flux tube are:

- 1. Formation of a bipolar region.
- 2. Shearing motions along the Polarity Inversion Line (PIL)

Interactions and eruptive phenomena:

- 1. Reconnection along the PIL due to sharing (van Balleggooijen and Martens 1989)
- 2.Formation of post-emergence flux rope (PEFR) (Manchester et al. 2004, Archontis et al. 2009)
- 3. Eruption of the PEFR depending on initial field magnitude, external field etc. (Torok & Kliem 2005, Archontis and Hood 2012)
- 4. Formation of jets and eruptive phenomena (Gontikakis et al 2009, Moreno-Insertis et al 2008)

Highly Twisted Flux Tubes – Basic Characteristics

Flux Emergence

Weakly Twisted Flux Tubes – Basic Characteristics

Highly Twisted	Weakly Twisted
Bipolar Region	2 Bipolar Regions with Shearing

Archontis, Hood, Tsinganos 2013, accepted

Non Twisted Flux Tubes - Differences with Highly Twisted

Highly Twisted	Non Twisted
Bipolar Region	2 Bipolar Regions without Shearing

Similarities with weakly twisted emerging flux tube

Non Twisted Flux Tubes – Buoyancy Instability

Buoyancy Instability Critical Condition (Acheson, 1979):

$$-H_{p}\frac{\partial}{\partial z}(\log B) > -\frac{\gamma}{2}\beta\delta + k_{\parallel}^{2}\left(1 + \frac{k_{\perp}^{2}}{k_{z}^{2}}\right)$$

Non Twisted Flux Tubes – Emergence and Jets

The two emerging lobes come in contact and reconnect, forming jets, and an envelope magnetic field, which confines the jets.

Simulation duration:

2h 51min (video: 1h 40min)

Ejection Velocities:

30-220 km/s

Ejection temperatures:

30.000K (compression ejections) up to

5.2MK (reconnection jets)

user: petros Tue Sep 3 02:30:39 2013

Non Twisted Flux Tubes – Formation of a Twisted Flux Tube

Through reconnection, a twisted flux tube is formed in the place where the inner opposite polarities collide.

B_x Component:

a)3D topology of the reconnection site.b)Motions around the PIL

Observe flux cancelation at different height per time

Observations?

Maybe?

Summary

In the non-twisted flux tube emergence we identify:

- 1)A double bipolar region emergence that leads to the formation of two interacting lobes.
- 2) Reconnection jets of temperature up to 5.2MK and velocity up to 200km/s
- 3) Formation of a magnetic envelope through reconnection
- 4) Formation of a twisted flux tube along the PIL

Future work:

- 1)Case of NTFT with λ =5 (smaller buoyant part of the tube)
- 2) Cases of weakly twisted and non twisted flux tubes with an ambient field
- 3) Observations (in progress)

Thank you!