
.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

A Newtonian problem as a guide for
relativistic astrophysics

T. Apostolatos,
in collaboration with G. Pappas, & K. Chatziioannou

Kapodistrian University of Athens

thapostol@phys.uoa.gr

September 12, 2013

T. Apostolatos, in collaboration with G. Pappas, & K. Chatziioannou (Kapodistrian U of A)Newtonian assist to Relativity September 12, 2013 1 / 21



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Overview

...1 The Euler’s problem

...2 Similarity to Kerr

...3 Exploiting this similarity
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Euler ∼ 1760

A very simple Newtonian problem with
interesting physical properties: The
gravitational field of two fixed point
masses.

V (r1, r2) = −Gm1

r1
− Gm2

r2

= − Gm1

|r − aẑ|
− Gm2

|r + aẑ|

The problem is better described in
spheroidal coordinates:

ξ =
r1 + r2
2a

, η =
r2 − r1
2a

T. Apostolatos, in collaboration with G. Pappas, & K. Chatziioannou (Kapodistrian U of A)Newtonian assist to Relativity September 12, 2013 3 / 21
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Property similar to Kerr #1

Orbits of test bodies in Euler’s potential are described by an
integrable problem, characterized by 3 integrals of motion:

E (total energy),

Lz(z-angular momentum),

Q(quadratic in momenta)

... just like in Kerr.

Integrability condition renders the equations of motion seperable
through the Hamilton-Jacobi technique (as in Kerr).

The orbits revolve around the axis of symmetry, they oscillate radially,
and with respect to the equatorial plane, but the equatorial plane is
repulsive! (the OPPOSITE of Kerr).

T. Apostolatos, in collaboration with G. Pappas, & K. Chatziioannou (Kapodistrian U of A)Newtonian assist to Relativity September 12, 2013 4 / 21
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Property similar to Kerr #2

Hold on!
There is a basic difference, behind this different behavior: The Euler’s
problem (the potential) is prolate, while Kerr is oblate. The quadrupole

moment of Kerr is M
(K)
2 = −ma2, while the one of Euler is M

(E)
2 = +ma2.

Here is the clue to make them look more similar: a → ia.
This is not physically realizable, but it has a perfectly real potential (at
least when the masses are equal m1 = m2 = M/2):

V (r) = − GM√
2R2

√
R2 + r2 − a2 = − GMξ

a(ξ2 + η2)

with R = 4
√

(r2 − a2)2 + (2ar · ẑ)2.

.

......Now it is an oblate potential with attractive equatorial plane (as Kerr).

T. Apostolatos, in collaboration with G. Pappas, & K. Chatziioannou (Kapodistrian U of A)Newtonian assist to Relativity September 12, 2013 5 / 21
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Property similar to Kerr #3
.
The 3rd integral of motion in Kerr (the Carter constant)
..

......

For µtest body = 1

Q(K) = u2θ + cos2 θ
[
a2(1− E 2) + L2z/ sin

2 θ
]

.
The Euler’s 3rd integral of motion
..

......

If we use the following physical transformations

η → cos θ, p2η(1− η2) → p2θ = (µuθ)
2,EN → 1

2
(1− E 2),

Q yields the following form for a test body with unitary mass

Q(E) = u2θ + cos2 θ
[
a2(1− E 2) + L2z/ sin

2 θ
]

What a surprise!
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Property similar to Kerr # 3...

.

... continued

..

......

Q(E) could also be written in terms of ξ and pξ, as well. By replacing
aξ → r and omit higher order terms of M/r , it coincides again with the
corrsponding expression of Q(K).

Now the identification is not complete - it’s approximate.
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Property similar to Kerr # 4

Euler’s problem has ISCO, like Kerr! (Kepler’s problem does NOT).

BUT due to relativistic frame dragging, retrograde and prograde
orbits in Kerr are not symmetrical UNLIKE axisymmetric Euler’s
problem. Thus there are two rISCO for Kerr, and a single rISCO in
Euler. How to compare them?

For Kerr: rISCO
M

= 3 + Z2 ∓
√

(3− Z1)(3 + Z1 + 2Z2)

with Z1 = 1 + 3
√
1− a⋆ 2

(
3
√
1− a⋆ + 3

√
1 + a⋆

)
, Z2 =

√
3a⋆ 2 + Z 2

1 ,

and a⋆ = a/M.

0.0 0.2 0.4 0.6 0.8

3
4
5
6
7
8

a*

r I
SC

O
�M

For Euler:
rISCO
M

= aξISCO =
√
3
a

M
=

√
3a⋆
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Property similar to Kerr # 4 ...

One could make the comparison on a more equal footing:

...1 Construct a pair of a retro- and a pro-grade Kerr ISCO orbit that
have equal magnitude of relative angular frequency to the black hole.

...2 Take the average rISCO of the pair with the same angular frequency
and plot it against the a⋆ value of the retrograde one.

0.2 0.4 0.6 0.8 1.0
a*

0.02
0.04
0.06
0.08
0.10

 Ω-WZAMO¤

0.2 0.4 0.6 0.8 1.0
a
*

4.0
4.2
4.4
4.6
4.8
5.0

r�ISCO

The final plot of equivalent rISCO for Kerr is almost linear as in Euler.
(The initial value and the slope is different though.)
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Property similar to Kerr # 5

Since both problems are separable, one could obtain formal expressions for
the fundamental frequencies of them.
.
The frequencies
..

......

Ωr = Ωξ =
πK (k)

K (k)Y + a2z+X [K (k)− E (k)]

Ωθ = Ωη =
(π/2)β

√
z+X

K (k)Y + a2z+X [K (k)− E (k)]

Ωϕ =
(K (k)Z + Lz [Π(π/2), z−, k)− K (k)]X

K (k)Y + a2z+X [K (k)− E (k)]

with {X ,Y ,Z} radial integrals related to the r -potential Vr , {K ,E ,Π}
elliptic integrals related to the azimuthal-potential Vθ, β

2 = a2(1− E 2) =
2a2EN and k =

√
z−/z+ (z± are the roots of Vθ).

T. Apostolatos, in collaboration with G. Pappas, & K. Chatziioannou (Kapodistrian U of A)Newtonian assist to Relativity September 12, 2013 10 / 21
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Properties similar to Kerr # 5...
The expressions are the same (at least formally) although some radial
integrals Z are somewhat different elliptic integrals, e.g.

Z (K) =

∫ r2

r1

[
Lz r

2 − 2Mr(Lz − aE )
]

(r2 + a2 − 2Mr)
√

Vr (r)
dr

while

Z (E) =

∫ aξ2

aξ1

Lz r
2

(r2 + a2)
√

Vξ(r)
dr

Moreover,

...1 in both cases ωr/ωθ → 1 as r → ∞.

...2 in both problems the dependence of the frequencies on p, e, ι is
qualitatively similar.

...3 in both problems the resonance condition ωr/ωθ = even is never met
[...see later].

Note: The frequencies in Kerr are directly observable through GWs.
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Properties similar to Kerr # 5...
The expressions are the same (at least formally) although some radial
integrals Z are somewhat different elliptic integrals, e.g.

Z (K) =

∫ r2

r1

[
Lz r

2 − 2Mr(Lz − aE )
]

(r2 + a2 − 2Mr)
√

Vr (r)
dr

while

Z (E) =

∫ aξ2

aξ1

Lz r
2

(r2 + a2)
√

Vξ(r)
dr

Moreover,
...1 in both cases ωr/ωθ → 1 as r → ∞.
...2 in both problems the dependence of the frequencies on p, e, ι is
qualitatively similar.

...3 in both problems the resonance condition ωr/ωθ = even is never met
[...see later].

Note: The frequencies in Kerr are directly observable through GWs.
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Properties similar to Kerr # 6

Recently (Warburton, Barack, Sago PRD87, 084012, 2013)
discovered a new property of Kerr: There are pairs of distinct
geodesic orbits in Kerr with different geometric characteristics, but
with identical frequency triads.

Following their arguments we have shown that Euler’s problem
pocesses exactly the same property. We have shown theoretically the
existence of identical frequencies but we are still searching for a
specific example.

Due to axisymmetry of orbits in Euler, things are more easy to
analyze there. This is an example of a property of Kerr that could
have been discovered by analyzing the Euler problem, first.

T. Apostolatos, in collaboration with G. Pappas, & K. Chatziioannou (Kapodistrian U of A)Newtonian assist to Relativity September 12, 2013 12 / 21
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Properties similar to Kerr # 7

Recently, (Glampedakis, Apostolatos CQG30, 055006, 2013) another
common property of Euler’s potential and Kerr background was revealed:

The wave equation in Euler’s background

�Ψ = −κVΨ

have a striking similarity to the perturbation equations for a scalar
field in Kerr.

The wave equation is separable in both cases. The azimuthal parts
are identical, while the radial one is similar but not identical.
Furthermore the difference shows up in the potential of the wave
equation beyond the second to higher order term.
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Properties similar to Kerr # 8,...

There are a few other similarities that were found much earlier (1970s).

8 The two fields are characterized by the same set of multipole
moments (Geroch 1970)

M2l = M(−a2)l ,
[
S2l+1 = Ma(−a2)l (for Kerr)

]

9 Will (PRL2010) showed that the Euler potential is the only
axisymmetric, and reflection symmetric one that have a Carter like
constant that is quadratic wrt momenta.

10 Keres (1967) and Israel (1970) showed that the Newtonian mass
distribution resembling Kerr’s effective source density is that of oblate
Euler’s problem.

T. Apostolatos, in collaboration with G. Pappas, & K. Chatziioannou (Kapodistrian U of A)Newtonian assist to Relativity September 12, 2013 14 / 21
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Properties similar to Kerr # 8,...
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11 A Kerr geodesic orbit could be “circular” (meaning spherical
r = const). Exactly the same kind of orbits ξ = const (thus
ellipsoidal in real space) exist in Euler’s problem as well.

? ... probably more ...?
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Are these similarities useful?

Fascinating, but
... are they of any use?
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A toy-model for Kerr

Assuming we have an analytic toy-model for Kerr, we could use it to
investigate properties of a dynamic Kerr background.
.
1. Circular goes to circular?
..

......

Kenefick and Ori (PRD1996) have presented a quite obsure argument
according to which an initially “circular” orbit in Kerr will drift
adiabatically to “circular” orbits under radiation reaction. Euler’s problem
is a nice testbed to check both analytically and numerically their
argument. (The analytical part has already been confirmed.)
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Relying on Euler for prognostics

Radiation reaction force for Kerr is still unknown (a huge analytical effort
has been made during the late decade to compute it approximately).
There are still open issues on modelling the radiating wave signals, with
sufficient accuracy, to detect and monitor them.
.
2. Orbits close to resonances?
..

......

Flanagan and Hinderer (PRD2008, PRD2012) have shown that our
naive evloution of orbits in Kerr near resonances could be disastrous
for our ability to even detect them (especially in EMRIs).

Euler ammended by a dissipative (radiation-like) artificial force could
give us at least a qualitative answer. We have suggested such a force

FRR = −ϵFGu
4u

(... under investigation)
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Relying on Euler for prognostics...
Could one use GW signals to check if relativistic astrophysics/GR is right?

.
3. Non Kerr objects - non Euler objects
..

......

Apostolatos, Gerakopoulos, Contopoulos (PRL2009, PRD2010)
suggested applying the KAM theorem and Birkhoff chain of islands
(characteristic behavior of slightly non-integrable systems) to check
for non-Kerr astrophysical objects through GWs.

A suitably perturbed Euler (with a small mass at the origin) could be
the analogue of a perturbed Kerr. Some artificial self-force could
adiabatically make an orbit pass through a resonance and its
consequences could be studied.
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Relying on Euler for prognostics...

.
3. Non Kerr objects - non Euler objects...
..

......

Preliminar studies show that the passage through a resonance is quite
enhanced, compared to what we initially thought (and used in our
paper). The plateau effect in the evolution of the ratio of the
observed frequencies might be much more pronounced.
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Thank you
... for your attention

+ =

T. Apostolatos, in collaboration with G. Pappas, & K. Chatziioannou (Kapodistrian U of A)Newtonian assist to Relativity September 12, 2013 21 / 21


	The Euler's problem
	Similarity to Kerr
	Exploiting this similarity

