Black hole jets

Ioannis Contopoulos, RCAAM, Academy of Athens

European Union European Social Fund

Co- financed by Greece and the European Union

• Do black holes have charge? **NO**

- Do black holes have charge? **NO**
- Do black holes have magnetic fields? NO

- Do black holes have charge? **NO**
- Do black holes have magnetic fields? **NO**
- Do black holes have jets? **YES**

- Do black holes have charge?
- Do black holes have magnetic fields?
- Do black holes have jets?

- Do black holes have charge? **YES**
- Do black holes have magnetic fields? **YES**
- Do black holes have jets? **NO**

Ioannis Contopoulos (RCAAM) Daniela Pugliese (RCAAM) Antonis Nathanail (RCAAM) Lila Koutsantoniou (U of Athens) Dimitris Papadopoulos (U of Thessaloniki) Demos Kazanas (NASA/Goddard) Denise Gabuzda (UC Cork) Nick Kylafis (U of Crete)

European Union European Social Fund

und Co- financed by Greece and the European Union

- Many astrophysicists feel uncomfortable in curved spacetime...
- Macdonald & Thorne reformulated electrodynamics with the hope that it may catalyze pulsar-experienced astrophysicists to begin research on black-hole electrodynamics and to bring to bear on this topic their lore about the 'axisymmetric pulsar problem'...

Macdonald & Thorne 1982

Contopoulos, Kazanas, Harding, Kalapotharakos

 $\mathcal{E}_{EM} \propto \omega (\Omega_{\rm BH} - \omega) \Psi_m^2 \sim \Omega_{\rm BH}^2 \Psi_m^2$

Blandford & Znajek 1977

- Radio loud/radio quiet AGN
- Jet formation and disruption in X-ray binaries
- No relation between BH spin and jet power?!!

5 et Steiner 3 $\tilde{\mathbf{C}}$ Narayan Russell

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

= $-\alpha^{2}dt^{2} + \frac{A\sin^{2}\theta}{\Sigma}(d\phi - \Omega dt)^{2} + \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2}$

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

= $-\alpha^{2}dt^{2} + \frac{A\sin^{2}\theta}{\Sigma}(d\phi - \Omega dt)^{2} + \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2}$

$$\begin{split} \tilde{\nabla} \cdot \tilde{B} &= 0\\ \tilde{\nabla} \cdot \tilde{E} &= 4\pi \rho_e\\ \tilde{\nabla} \times (\alpha \tilde{B}) &= 4\pi \alpha \tilde{J}\\ \nabla \times (\alpha \tilde{E}) &= 0.\\ \tilde{E} \cdot \tilde{B} &= 0 \end{split}$$

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

= $-\alpha^{2}dt^{2} + \frac{A\sin^{2}\theta}{\Sigma}(d\phi - \Omega dt)^{2} + \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2}$

$$\begin{split} \tilde{\nabla} \cdot \tilde{B} &= 0 \\ \tilde{\nabla} \cdot \tilde{E} &= 4\pi \rho_e \\ \tilde{\nabla} \times (\alpha \tilde{B}) &= 4\pi \alpha \tilde{J} \\ \nabla \times (\alpha \tilde{E}) &= 0 . \\ \tilde{E} \cdot \tilde{B} &= 0 \end{split} \qquad \qquad \tilde{B}(r,\theta) = \frac{1}{\sqrt{A}\sin\theta} \left\{ \Psi_{,\theta}, -\sqrt{\Delta}\Psi_{,r}, \frac{2I\sqrt{\Sigma}}{\alpha} \right\} \\ \tilde{E}(r,\theta) &= \frac{\Omega - \omega}{\alpha\sqrt{\Sigma}} \left\{ \sqrt{\Delta}\Psi_{,r}, \Psi_{,\theta}, 0 \right\} . \end{split}$$

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

= $-\alpha^{2}dt^{2} + \frac{A\sin^{2}\theta}{\Sigma}(d\phi - \Omega dt)^{2} + \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2}$

$$\begin{split} \tilde{\nabla} \cdot \tilde{B} &= 0 \\ \tilde{\nabla} \cdot \tilde{E} &= 4\pi \rho_e \\ \tilde{\nabla} \times (\alpha \tilde{B}) &= 4\pi \alpha \tilde{J} \\ \nabla \times (\alpha \tilde{E}) &= 0 . \\ \tilde{E} \cdot \tilde{B} &= 0 \end{split} \qquad \qquad \tilde{B}(r,\theta) = \frac{1}{\sqrt{A}\sin\theta} \left\{ \Psi_{,\theta}, -\sqrt{\Delta}\Psi_{,r}, \frac{2I\sqrt{\Sigma}}{\alpha} \right\} \\ \tilde{E}(r,\theta) &= \frac{\Omega - \omega}{\alpha\sqrt{\Sigma}} \left\{ \sqrt{\Delta}\Psi_{,r}, \Psi_{,\theta}, 0 \right\} . \end{split}$$

$$\rho_e \tilde{E} + \tilde{J} \times \tilde{B} = 0$$

$$\begin{cases} \Psi_{,rr} + \frac{1}{\Delta}\Psi_{,\theta\theta} + \Psi_{,r}\left(\frac{A_{,r}}{A} - \frac{\Sigma_{,r}}{\Sigma}\right) - \frac{\Psi_{,\theta}}{\Delta}\frac{\cos\theta}{\sin\theta} \end{cases} \cdot \left[1 - \frac{\omega^{2}A\sin^{2}\theta}{\Sigma} + \frac{4M\alpha\omega r\sin^{2}\theta}{\Sigma} - \frac{2Mr}{\Sigma}\right] \\ - \left(\frac{A_{,r}}{A} - \frac{\Sigma_{,r}}{\Sigma}\right)\Psi_{,r} - \left(2\frac{\cos\theta}{\sin\theta} - \frac{A_{,\theta}}{A} + \frac{\Sigma_{,\theta}}{\Sigma}\right)\left(\omega^{2}A\sin^{2}\theta - 4M\alpha\omega r\sin^{2}\theta + 2Mr\right)\frac{\Psi_{,\theta}}{\Delta\Sigma} \\ + \frac{2Mr}{\Sigma}\left(\frac{A_{,r}}{A} - \frac{1}{r}\right)\Psi_{,r} + \frac{4\omega M\alpha r\sin^{2}\theta}{\Sigma}\left\{\Psi_{,r}\left(\frac{1}{r} - \frac{A_{,r}}{A}\right) - \frac{\Psi_{,\theta}}{\Delta}\frac{A_{,\theta}}{A}\right\} \\ - \frac{\omega'\sin^{2}\theta}{\Sigma}\left(\omega A - 2\alpha Mr\right)\left(\Psi_{,r}^{2} + \frac{1}{\Delta}\Psi_{,\theta}^{2}\right) = -\frac{4\Sigma}{\Delta}II'$$

$$1 - \frac{\omega^2 A \sin^2 \theta}{\Sigma} + \frac{4M\alpha \omega r \sin^2 \theta}{\Sigma} - \frac{2Mr}{\Sigma} = 0$$

$$\left(\Psi_{,rr} + \frac{1}{r^2}\Psi_{,\theta\theta} + \frac{2\Psi_{,r}}{r} - \frac{1}{r^2}\frac{\cos\theta}{\sin\theta}\Psi_{,\theta}\right) \cdot \left[1 - \omega^2 r^2 \sin^2\theta\right]$$
$$-\frac{2\Psi_{,r}}{r} - 2\omega^2 \cos\theta \sin\theta\Psi_{,\theta} - \omega\omega' r^2 \sin^2\theta \left(\Psi_{,r}^2 + \frac{1}{r^2}\Psi_{,\theta}^2\right) = -4II'$$

- The pulsar light cylinder: $r \sin \theta = c/\omega$
- The electric current $I(\Psi)$ must be determined selfconsistently

$$1 - \frac{\omega^2 A \sin^2 \theta}{\Sigma} + \frac{4M\alpha \omega r \sin^2 \theta}{\Sigma} - \frac{2Mr}{\Sigma} = 0$$

- The black hole possesses two light surfaces
- The electric current $I(\Psi)$ must be determined selfconsistently together with the angular velocity of the magnetic field $\omega(\Psi)$

α=0.9999M, ω~0.5 Ω_{BH}

Blandford-Znajek revisited

α=0.7-0.9999M, ω~0.5 Ω_{BH}

Contopoulos et al. 2013 (in preparation)

Palenzuela, Bona, Lehner, Reula 2011 Alic, Moesta, Rezzolla, Jaramillo, Palenzuela, Zanotti 2013

Palenzuela, Bona, Lehner, Reula 2011 Alic, Moesta, Rezzolla, Jaramillo, Palenzuela, Zanotti 2013

Not real jets!

-8 -6 -4 -2 0 2 4 6 8 X-Axis (M)

Palenzuela, Bona, Lehner, Reula 2011 Alic, Moesta, Rezzolla, Jaramillo, Palenzuela, Zanotti 2013

Jets!

 $Q \sim B_o r_*^2 \left(\frac{\omega r_*}{c}\right)$

 $B \sim \frac{Q\omega}{r_{bh}c} \sim B_o \left(\frac{\omega r_{bh}}{c}\right)^2$

$$B \sim \frac{Q\omega}{r_{bh}c} \sim B_o \left(\frac{\omega r_{bh}}{c}\right)^2$$

The Kerr-Newman black hole

$$B \sim \frac{Q\omega}{r_{bh}c} \sim B_o \left(\frac{\omega r_{bh}}{c}\right)^2$$

The Kerr-Newman black hole $B_{KN} \sim 10^{19} G$

$$B \sim \frac{Q\omega}{r_{bh}c} \sim B_o \left(\frac{\omega r_{bh}}{c}\right)^2$$

The Kerr-Newman black hole $B_{KN} \sim 10^{19} G$

 $B_{MBH} \sim 10^{15} G$

$$B \sim \frac{Q\omega}{r_{bh}c} \sim B_o \left(\frac{\omega r_{bh}}{c}\right)^2$$

The Kerr-Newman black hole

$$B_{KN} \sim 10^{19} G$$
$$B_{MBH} \sim 10^{15} G$$
$$B_{eq} \sim 10^{7-8} G$$

- A Kerr black hole with its own magnetic field
- Pulsar-like boundary conditions on the horizon

2013 Contopoulos, Nathanail, Pugliese

 $\dot{E}_{t=0} \sim 10^{51} \text{ erg/sec}$

Is it relevant for GRB?

 $\dot{E}_{t=0} \sim 10^{51} \text{ erg/sec}$

$\dot{E}_{t=0} \sim 10^{51} \text{ erg/sec}$ Is it relevant for GRB? $\dot{E} \sim \omega \dot{\omega} \sim (Br_{bh}^2)^2 \omega^2$

$\dot{E}_{t=0} \sim 10^{51} \text{ erg/sec}$ Is it relevant for GRB? $\dot{E} \sim \omega \dot{\omega} \sim (Br_{bh}^2)^2 \omega^2$ $\dot{E}_{BZ} \sim \omega^2 \sim e^{-t/\tau}$

 $\dot{E}_{t=0} \sim 10^{51} \text{ erg/sec}$ Is it relevant for GRB? $\dot{E} \sim \omega \dot{\omega} \sim (Br_{bb}^2)^2 \omega^2$ $\dot{E}_{BZ} \sim \omega^2 \sim e^{-t/\tau}$ $\dot{E}_{MBH} \sim \omega^8 \sim (t/\tau)^{-4/3}$

XRT and (extrapolated) BAT light curves two_breaks

XRT and (extrapolated) BAT light curves two_breaks

XRT and (extrapolated) BAT light curves two_breaks

XRT and (extrapolated) BAT light curves two_breaks

XRT and (extrapolated) BAT light curves two_breaks

Conclusions

- The black hole magnetic field may be generated in the accretion disk (Cosmic Battery)
- Stellar mass black holes gain charge and magnetic field during their formation (MBH)
- MBH: an "orthogonal" GRB model?
- Isolated black holes do not produce jets