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• Many astrophysicists feel uncomfortable in curved 
spacetime...

• Macdonald & Thorne reformulated electrodynamics 
with the hope that it may catalyze pulsar-experienced 
astrophysicists to begin research on black-hole 
electrodynamics and to bring to bear on this topic their 
lore about the ‘axisymmetric pulsar problem’...

Macdonald & Thorne 1982

The analogy with pulsars



The analogy with pulsars

Contopoulos, Kazanas & Fendt 1999



The analogy with pulsars

The light cylinder
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The return  current sheet
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Electrons and Positrons
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• Radio loud/radio quiet AGN

• Jet formation and disruption in X-ray binaries

• No relation between BH spin and jet power?!!

Blandford-Znajek
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the exact structure of the black hole magnetosphere. Also, at that time, the fundamental
significance of the distributions of the magnetospheric electric current and field line angular
velocity had not been appreciated. Today, we revisit this problem with all the knowledge we
carry from our 13-year long investigation of the force-free pulsar magnetosphere.

2. The general relativistic pulsar equation

In order to derive the fundamental equation that governs the steady-state structure of
the force-free magnetosphere around a Kerr black hole we follow closely the 3+1 formulation
of Thorne & Macdonald (1982) used by most researchers in the astrophysical community
(e.g. Uzdensky 2005). We restrict our analysis to steady-state and axisymmetric space times
where (. . .),t = (. . .),φ = 0. In that case, the general 4-dimensional space-time geometry may
be written in Boyer-Lindquist spherical coordinates xµ ≡ (t, r, θ,φ) as

ds2 = gµνdx
µdxν

= −α2dt2 +
A sin2 θ

Σ
(dφ− Ωdt)2 +

Σ

∆
dr2 + Σdθ2 . (1)

Here, α ≡ (∆Σ/A)1/2 and Ω ≡ 2aMr/A are the lapse function and angular velocity of
‘zero-angular momentum’ fiducial observers (ZAMOs) respectively,

∆ ≡ r2 − 2Mr + a2 , Σ ≡ r2 + a2 cos2 θ , A ≡ (r2 + a2)2 − a2∆ sin2 θ , (2)

M is the black hole mass, and a its angular momentum (0 ≤ a ≤ M). Throughout this
paper we adopt geometric units where G = c = 1. Semicolon stands for covariant derivative,
comma for partial derivative. Latin indices denote spatial components (1−3), Greek indices
denote space-time components (0− 3), and ‘∼’ denotes the spatial part of vectors. ZAMOs
move with 4-velocity Uµ = (1/α , 0 , 0 ,Ω/α) orthogonal to hypersurfaces of constant t. The
force-free magnetosphere of a spinning black hole is characterized by the electromagnetic
energy-momentum tensor

T µν =
1

4π
(F µ

αF
να − 1

4
FαβF

αβgµν) , (3)

and the condition T µν
;ν = 0. Here, the rest mass and pressure contribution have been

neglected. The electromagnetic field tensor F µν is related to the electric and magnetic
fields Eµ, Bµ measured by ZAMOs through F µν = UµEν − UνEµ + εµνλρBλUρ (εµνλρ ≡
|det(gµν |−1/2[µνλρ] is the 4-dimensional Levi-Civita tensor). Under these conditions, the fun-
damental equation that governs the steady-state structure of the force-free magnetosphere
around a Kerr black hole becomes

ρeẼ + J̃ × B̃ = 0 . (4)
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magnetosphere around a Kerr black hole becomes

ρeẼ + J̃ × B̃ = 0 . (4)

ρe and J̃ are the electric charge and current densities respectively. Eq. (4) is supplemented
by Maxwell’s equations of electrodynamics

∇̃ · B̃ = 0

∇̃ · Ẽ = 4πρe

∇̃ × (αB̃) = 4παJ̃

∇× (αẼ) = 0 . (5)

Here,
∇̃ · Ã ≡ Aj

;j , (∇̃ × Ã)i ≡ [ijk]|det(glm)|−1/2Ak;j , (6)

Ã · B̃ ≡ gijAiBj , (Ã× B̃)i ≡ [ijk]|det(glm)|−1/2AjBk . (7)

For several applications in astrophysics, perfect (infinite) conductivity is a valid approxima-
tion. In this case,

Ẽ · B̃ = 0 , (8)

and the electric and magnetic vector fields can be expressed in terms of three scalar functions,
Ψ(r, θ), ω(Ψ), and I(Ψ) as

B̃(r, θ) =
1√

A sin θ

�
Ψ,θ,−

√
∆Ψ,r,

2I
√
Σ

α

�
(9)

Ẽ(r, θ) =
ΩBH − ω

α
√
Σ

�√
∆Ψ,r,Ψ,θ, 0

�
. (10)

ΩBH ≡ a/(r2
BH

+ a2) is the angular velocity of the black hole, rBH ≡ M +
√
M2 − a2 is the

radius of the black hole horizon, ω is the angular velocity of the magnetic field lines, and I
is the poloidal electric current flowing through the circular loop r =const., θ =const. The
poloidal component of Eq. (4) then yields the general relativistic force-free Grad-Shafranov
equation
�
Ψ,rr +

1

∆
Ψ,θθ +Ψ,r

�
A,r

A
− Σ,r

Σ

�
− Ψ,θ

∆

cos θ

sin θ

�
·
�
1− ω2A sin2 θ

Σ
+

4Mαωr sin2 θ

Σ
− 2Mr

Σ

�

−
�
A,r

A
− Σ,r

Σ

�
Ψ,r −

�
2
cos θ

sin θ
− A,θ

A
+

Σ,θ

Σ

�
(ω2A sin2 θ − 4Mαωr sin2 θ + 2Mr)

Ψ,θ

∆Σ
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∇× (αẼ) = 0 . (5)

Here,
∇̃ · Ã ≡ Aj
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∇̃ · Ã ≡ Aj
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∇̃ · Ẽ = 4πρe

∇̃ × (αB̃) = 4παJ̃
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flux enclosed in that loop. Notice that the electric field changes sign close to the horizon with
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∇̃ · Ẽ = 4πρe

∇̃ × (αB̃) = 4παJ̃
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Ã · B̃ ≡ gijAiBj , (Ã× B̃)i ≡ [ijk]|det(glm)|−1/2AjBk . (7)

For several applications in astrophysics, perfect (infinite) conductivity is a valid approxima-
tion. In this case,

Ẽ · B̃ = 0 , (8)

and the electric and magnetic vector fields can be expressed in terms of three scalar functions,
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∇× (αẼ) = 0 . (5)

Here,
∇̃ · Ã ≡ Aj
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the exact structure of the black hole magnetosphere. Also, at that time, the fundamental
significance of the distributions of the magnetospheric electric current and field line angular
velocity had not been appreciated. Today, we revisit this problem with all the knowledge we
carry from our 13-year long investigation of the force-free pulsar magnetosphere.

2. The general relativistic pulsar equation

In order to derive the fundamental equation that governs the steady-state structure of
the force-free magnetosphere around a Kerr black hole we follow closely the 3+1 formulation
of Thorne & Macdonald (1982) used by most researchers in the astrophysical community
(e.g. Uzdensky 2005). We restrict our analysis to steady-state and axisymmetric space times
where (. . .),t = (. . .),φ = 0. In that case, the general 4-dimensional space-time geometry may
be written in Boyer-Lindquist spherical coordinates xµ ≡ (t, r, θ,φ) as

ds2 = gµνdx
µdxν

= −α2dt2 +
A sin2 θ

Σ
(dφ− Ωdt)2 +

Σ

∆
dr2 + Σdθ2 . (1)

Here, α ≡ (∆Σ/A)1/2 and Ω ≡ 2aMr/A are the lapse function and angular velocity of
‘zero-angular momentum’ fiducial observers (ZAMOs) respectively,

∆ ≡ r2 − 2Mr + a2 , Σ ≡ r2 + a2 cos2 θ , A ≡ (r2 + a2)2 − a2∆ sin2 θ , (2)

M is the black hole mass, and a its angular momentum (0 ≤ a ≤ M). Throughout this
paper we adopt geometric units where G = c = 1. Semicolon stands for covariant derivative,
comma for partial derivative. Latin indices denote spatial components (1−3), Greek indices
denote space-time components (0− 3), and ‘∼’ denotes the spatial part of vectors. ZAMOs
move with 4-velocity Uµ = (1/α , 0 , 0 ,Ω/α) orthogonal to hypersurfaces of constant t. The
force-free magnetosphere of a spinning black hole is characterized by the electromagnetic
energy-momentum tensor

T µν =
1

4π
(F µ

αF
να − 1

4
FαβF

αβgµν) , (3)

and the condition T µν
;ν = 0. Here, the rest mass and pressure contribution have been

neglected. The electromagnetic field tensor F µν is related to the electric and magnetic
fields Eµ, Bµ measured by ZAMOs through F µν = UµEν − UνEµ + εµνλρBλUρ (εµνλρ ≡
|det(gµν |−1/2[µνλρ] is the 4-dimensional Levi-Civita tensor). Under these conditions, the fun-
damental equation that governs the steady-state structure of the force-free magnetosphere
around a Kerr black hole becomes

ρeẼ + J̃ × B̃ = 0 . (4)
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ρe and J̃ are the electric charge and current densities respectively. Eq. (4) is supplemented
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For several applications in astrophysics, perfect (infinite) conductivity is a valid approxima-
tion. In this case,
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ω is the angular velocity of the magnetic field lines, I is the poloidal electric current flowing
through the circular loop r =const., θ =const., and Ψ is equal to 2π times the total magnetic
flux enclosed in that loop. Notice that the electric field changes sign close to the horizon with
respect to its sign at large distances. As explained in BZ77, a rotating observer (ZAMO)
will in general see a Poynting flux of energy entering the horizon, but he will also see a
sufficiently strong flux of angular momentum leaving the horizon. That ensures that energy
is extracted from the black hole. The poloidal component of Eq. (4) then yields the general
relativistic force-free Grad-Shafranov equation
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(Eq. (3.14) of Blandford & Znajek 1977 re-written in our notation). Henceforth, primes will
denote differentiation with respect to Ψ. One sees directly that if we set α = 0 and M = 0
in eq. (11) we obtain

�
Ψ,rr +

1
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Ψ,θθ +

2Ψ,r

r
− 1

r2
cos θ

sin θ
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�
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�
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�
= −4II � , (12)

which is the well known pulsar equation (Scharlemann & Wagoner 1973). The zeroing of the
expression multiplying the second order derivative term in eq. (11) yields the two singular
‘light surfaces’. When M = α = 0, it yields the standard pulsar light cylinder r sin θ = c/ω.
When M �= 0 and α �= 0, the shape of the outer ‘light surface’ is only asymptotically
cylindrical as θ → 0 (see figure 2 below), and an inner ‘light surface’ appears inside the
ergosphere. It is interesting to note that the outer boundary of the ergosphere corresponds
to the solution of the singularity condition for ω = 0, whereas the inner boundary (the
event horizon) corresponds to the solution of the singularity condition for ω = ΩBH. It is
also interesting to note that the natural ‘radiation condition’ at infinity (energy must flow
outwards along all field lines) requires that

0 ≤ ω ≤ ΩBH (13)

(Blandford & Znajek 1977), and therefore indeed the inner ‘light surface’ lies inside the
ergosphere.

Both Eqs. (11) and (12) contain the two functions, ω(Ψ) and I(Ψ), which must be
determined by the physics of the problem. In the case of an axisymmetric spinning neutron
star, ω is usually taken to be equal to the neutron star angular velocity ΩNS. Notice that in
the presence of particle acceleration magnetospheric ‘gaps’, this is not 100% exact (Ruderman
& Sutherland 1975, Contopoulos 2005). In particular, in old pulsars near their death line
ω � ΩNS. In pulsars, I(Ψ) is self-consistently determined through an iterative numerical
technique that implements a smooth crossing of the relativistic Alfvèn surface, the light
cylinder where r sin θ = c/ω (Contopoulos, Kazanas & Fendt 1999, Timokhin 2006). In the
case of a spinning black hole, the situation is qualitatively similar but more complicated.
Contrary to a neutron star, the black hole does not have a solid surface, and therefore it
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We update the distributions of ω(Ψ) and I(Ψ) as follows: At each latitude θ, we check

where the singularity condition

1− ω2A sin
2 θ

Σ
+

4Mαωr sin2 θ

Σ
− 2Mr

Σ
= 0 (17)

is satisfied in r. At each such radial position, we extrapolate Ψ from r+ (larger r) and

r− (smaller r). In general, Ψ(r+, θ) differs from Ψ(r−, θ). At the inner ‘light surface’ we

implement

ωnew(Ψnew) = ωold(Ψnew)− [Ψ(r+, θ)−Ψ(r−, θ)] , with (18)

Ψnew ≡ 0.5Ψ(r+, θ) + 0.5Ψ(r−, θ) , (19)

whereas at the outer ‘light surface’ we implement

ωnew(Ψnew) = ωold(Ψnew)− [Ψ(r+, θ)−Ψ(r−, θ)] , (20)

Inew(Ψnew) = Iold(Ψnew) + [Ψ(r+, θ)−Ψ(r−, θ)] , with (21)

Ψnew ≡ 0.5Ψ(r+, θ) + 0.5Ψ(r−, θ) . (22)

In order to facilitate convergence, at the inner ‘light surface’ we update only ω every 10

relaxation iterations for Ψ, whereas at the outer ‘light surface’ we update both ω and I every

50 relaxation iterations for Ψ. Also, in order to avoid numerical instabilities, we smooth out

the distributions of ω(Ψ) and I(Ψ) every 50 relaxation iterations for Ψ. We found that

more frequent smoothing inhibits the convergence of our iteration scheme. Notice that this

procedure was obtained empirically and is not a general rule for anyone who may want to

reproduce our results. It is also interesting that we update ω and I only through the non-

smoothness of the solution, and not through the regularization conditions at the two singular

‘light surfaces’ as we did in Contopoulos, Kazanas & Fendt (1999). In fact, this is a very

general procedure that may be applied to any similar singular equation. One must be careful

with the sign of the correction terms which can only be determined empirically by trial and

error.

The results of our numerical integration are shown in figure 1. We show here the final

distributions for ω(Ψ) (left panel) and |I(Ψ)| (right panel) for five values of the black hole spin
parameter a. The solution is very close (within 10%) to the split monopole configuration that

we implemented as initial condition for our iterative relaxation numerical method (Eqs. 15 &

16). As is the case in pulsars, the magnetospheric electric current is non-zero at Ψ = Ψmax,

and the global electric circuit closes through an equatorial current sheet. Notice that we

have no way to update ω along the axis, and therefore we have chosen ω(Ψ = 0) = 0.5ΩBH.

We have also implemented ω�(Ψ = Ψmax) = I �(Ψ = Ψmax) = 0. The reader should check

Contopoulos, Kazanas & Papadopoulos 2013
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which is the well known pulsar equation (Scharlemann & Wagoner 1973). The zeroing of the
expression multiplying the second order derivative term in eq. (11) yields the two singular
‘light surfaces’. When M = α = 0, it yields the standard pulsar light cylinder r sin θ = c/ω.
When M �= 0 and α �= 0, the shape of the outer ‘light surface’ is only asymptotically
cylindrical as θ → 0 (see figure 2 below), and an inner ‘light surface’ appears inside the
ergosphere. It is interesting to note that the outer boundary of the ergosphere corresponds
to the solution of the singularity condition for ω = 0, whereas the inner boundary (the
event horizon) corresponds to the solution of the singularity condition for ω = ΩBH. It is
also interesting to note that the natural ‘radiation condition’ at infinity (energy must flow
outwards along all field lines) requires that

0 ≤ ω ≤ ΩBH (13)

(Blandford & Znajek 1977), and therefore indeed the inner ‘light surface’ lies inside the
ergosphere.

Both Eqs. (11) and (12) contain the two functions, ω(Ψ) and I(Ψ), which must be
determined by the physics of the problem. In the case of an axisymmetric spinning neutron
star, ω is usually taken to be equal to the neutron star angular velocity ΩNS. Notice that in
the presence of particle acceleration magnetospheric ‘gaps’, this is not 100% exact (Ruderman
& Sutherland 1975, Contopoulos 2005). In particular, in old pulsars near their death line
ω � ΩNS. In pulsars, I(Ψ) is self-consistently determined through an iterative numerical
technique that implements a smooth crossing of the relativistic Alfvèn surface, the light
cylinder where r sin θ = c/ω (Contopoulos, Kazanas & Fendt 1999, Timokhin 2006). In the
case of a spinning black hole, the situation is qualitatively similar but more complicated.
Contrary to a neutron star, the black hole does not have a solid surface, and therefore it

• The pulsar light cylinder:    r sinθ = c/ω

• The electric current I(Ψ) must be determined self-
consistently
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Contopoulos, Kazanas & Papadopoulos 2013 

• The black hole possesses two light surfaces

• The electric current I(Ψ) must be determined self-
consistently together with the angular velocity of the 
magnetic field ω(Ψ)
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Fig. 2.— Poloidal magnetic field lines (lines of constant Ψ in 20 equal subdivisions of Ψmax)
for a = 0.9999 close to the event horizon (left panel) and further out (right panel). The thick
lines are the event horizon, the inner ‘light surface’, the outer boundary of the ergosphere,
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Fig. 1.— Distributions of ω(Ψ) normalized to 0.5/ΩBH (left panel) and 2|I(Ψ)| normalized
to the split monopole value ΩBHΨmax (right panel) for various values of the black hole spin
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Robustness of the Blandford-Znajek mechanism 6

Figure 1. Electromagnetic energy density flux for R = 0 (left), R = 1/2 (middle)
and R = 1 (right) at t = 320M .

until a quasi-stationary regime is reached, comparing the luminosity obtained for
each case far away from the black hole. This luminosity is computed as the integral
of the electromagnetic energy flux density (which can be seen for the three cases
studied in fig. 1) on a solid angle of 15 degrees along the z-axis (further details on this
computation are described in [7]) and shown in figure 2 (left plot), after a convenient
renormalization with the asymptotic value of the R = 1 case. After a transitory initial
behaviour, the obtained luminosities for the different values of the reflection coefficient
R are qualitatively the same in structure and the emitted power within similar ranges.
It is interesting to notice the energy density flux reaches a rather constant asymptotic
configuration in the R = 0 case, while relatively small amplitude cylindrical oscillations
are observed for 0 < R ≤ 1. Nevertheless, the jet structure and average luminosities
obtained are comparable in all cases. Thus, within typical astrophysical uncertainties
it is clear the BZ mechanism is not affected when considering significantly different
boundary conditions.

To ensure the boundary location does not affect the above observations, we have
studied the jet’s luminosity for two different boundary placements along the jet’s
direction; the original domain (small) with z = [−16, 16]M and another one (large)
with z = [−32, 32]M . Figure 2 (right plot) illustrates the obtained values for the
case with R = 1 normalized to the asymptotic value of the small domain simulation,
showing again that at late times the values obtained are quite similar.

4. Final Comments

This work illustrates the robustness of the BZ mechanism to generate a collimated
Poynting flux of energy which is largely independent of the boundary conditions
adopted. Consequently, while the load’s characteristics are essentially unknown, our
studies indicate the jet resulting from the plasma’s ability to extract energy from the
black hole’s vicinity is robust.

Palenzuela, Bona, Lehner, 
Reula 2011 

Alic, Moesta, Rezzolla, 
Jaramillo, Palenzuela, 

Zanotti 2013 
Contopoulos et al. 2013 (in 

preparation) 
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Not real jets!
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Jets!
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The magnetic black hole

• A Kerr black hole with its own magnetic field

• Pulsar-like boundary conditions on the horizon
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ĖBZ ∼ ω2 ∼ e−t/τ



Is it relevant for GRB?

The magnetic black hole

C
on

to
po

ul
os

, N
at

ha
na

il,
 P

ug
lie

se
   

20
13
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Conclusions

• The black hole magnetic field may be generated 
in the accretion disk (Cosmic Battery)

• Stellar mass black holes gain charge and 
magnetic field during their formation (MBH)

• MBH: an “orthogonal” GRB model?

• Isolated black holes do not produce jets


