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Goal 

 We investigate cosmological 
scenarios in a universe governed by 
torsional gravity 

 Note: 

  A consistent or interesting cosmology 
is not a proof for the consistency of 
the underlying gravitational theory 

 E.N.Saridakis – 11th HAC,Athens, Sept. 2013 
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Talk Plan 

 1) Introduction: Gravity as a gauge theory, modified Gravity 
                          

 2) Teleparallel Equivalent of General Relativity and f(T) modification 
 

 3)  Perturbations and growth evolution 
 

 4)  Bounce in f(T) cosmology 
 

 5)  Non-minimal scalar-torsion theory  
 

 6)  Black-hole solutions 
 

 7)  Solar system and growth-index constraints 
 

 8)  Conclusions-Prospects 
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Introduction 

 Einstein 1916: General Relativity:  

   energy-momentum source of spacetime Curvature 

   Levi-Civita connection: Zero Torsion 

 

 Einstein 1928: Teleparallel Equivalent of GR: 

    Weitzenbock connection: Zero Curvature 

 

 Einstein-Cartan theory: energy-momentum 
source of Curvature, spin source of Torsion 

   [Hehl, Von Der Heyde, Kerlick, Nester  Rev.Mod.Phys.48]  
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Introduction 

 Gauge Principle: global symmetries replaced by 
local ones: 

   The group generators give rise to the compensating 
fields 

   It works perfect for the standard model of strong, 
weak and E/M interactions 

 
 

 Can we apply this to gravity? 

    )1(23 USUSU 

E.N.Saridakis – 11th HAC,Athens, Sept. 2013 



6 

Introduction 

 Formulating the gauge theory of gravity  

    (mainly after 1960): 

 Start from Special Relativity       

      Apply (Weyl-Yang-Mills) gauge principle to its Poincaré-    

      group symmetries 

      Get Poinaré gauge theory: 

      Both curvature and torsion appear as field strengths 
 

 Torsion is the field strength of the translational group 

  (Teleparallel and Einstein-Cartan theories are subcases of Poincaré theory) 




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Introduction 

 One could extend the gravity gauge group (SUSY, 
conformal, scale, metric affine transformations) 

   obtaining SUGRA, conformal, Weyl, metric affine     

   gauge theories of gravity 

 

 In all of them torsion is always related to the gauge 
structure. 

 Thus, a possible way towards gravity quantization 
would need to bring torsion into gravity description. 

 

E.N.Saridakis – 11th HAC,Athens, Sept. 2013 



8 

 Introduction 

 1998: Universe acceleration   

        Thousands of work in Modified Gravity 

  (f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,    

          nonminimal derivative coupling, Galileons, Hordenski etc) 

 

 Almost all in the curvature-based formulation of gravity 

 

 

  

 



   [Copeland, Sami, Tsujikawa  Int.J.Mod.Phys.D15], [Nojiri, Odintsov  Int.J.Geom.Meth.Mod.Phys. 4]  
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 Introduction 

 1998: Universe acceleration   

        Thousands of work in Modified Gravity 

  (f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,    

          nonminimal derivative coupling, Galileons, Hordenski etc) 

 

 Almost all in the curvature-based formulation of gravity 
 

 So question: Can we modify gravity starting from its 
torsion-based formulation? 

    torsion              gauge                  quantization 

    modification       full theory            quantization 

 

 

  

 



 ?
 ?

   [Copeland, Sami, Tsujikawa  Int.J.Mod.Phys.D15], [Nojiri, Odintsov  Int.J.Geom.Meth.Mod.Phys. 4]  
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 Teleparallel Equivalent of General Relativity (TEGR) 

 Let’s start from the simplest tosion-based gravity formulation, 
namely TEGR: 

 Vierbeins     : four linearly independent fields in the tangent space 

 

 Use curvature-less Weitzenböck connection instead of torsion-less 
Levi-Civita one: 

 Torsion tensor: 
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 Teleparallel Equivalent of General Relativity (TEGR) 

 Let’s start from the simplest tosion-based gravity formulation, 
namely TEGR: 

 Vierbeins     : four linearly independent fields in the tangent space 

 

 Use curvature-less Weitzenböck connection instead of torsion-less 
Levi-Civita one: 

 Torsion tensor: 

 
          

 Lagrangian (imposing coordinate, Lorentz, parity invariance, and up to 2nd order 

in torsion tensor) 

 

  

 

)()()( xexexg BA

AB  


Ae

A

A

W ee 


  }{

 AA

A

WW eeeT 







  }{}{










  TTTTTL
2

1

4

1

[Einstein 1928],  [Hayaski,Shirafuji PRD 19], [Pereira: Introduction to TG]  

 Completely equivalent with    

      GR at the level of equations 
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 f(T) Gravity and f(T) Cosmology 

 f(T) Gravity: Simplest torsion-based modified gravity 

 Generalize T to f(T)   (inspired by f(R)) 

 
 

 Equations of motion: 
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 f(T) Gravity and f(T) Cosmology 

 f(T) Gravity: Simplest torsion-based modified gravity 

 Generalize T to f(T)   (inspired by f(R)) 

 
 

 Equations of motion: 

 
 

 f(T) Cosmology: Apply in FRW geometry: 
 

                                                                                                 (not unique choice) 
 

 Friedmann equations: 
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 f(T) Cosmology: Background 

 Effective Dark Energy sector: 
 

 
 

 

 

 Interesting cosmological behavior: Acceleration, Inflation etc 

 At the background level indistinguishable from other dynamical DE models 
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 f(T) Cosmology: Perturbations 

 Can I find imprints of f(T) gravity? Yes, but need to go to perturbation level 

 
 

 Obtain Perturbation Equations: 

 

 

 

 

 Focus on growth of matter overdensity                go to Fourier modes: 
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 f(T) Cosmology: Perturbations 

 Application: Distinguish f(T) from quintessence 

 1)  Reconstruct f(T) to coincide with a given quintessence scenario: 
 

          with                          and    
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 f(T) Cosmology: Perturbations 

 Application: Distinguish f(T) from quintessence 

 2)  Examine evolution of matter overdensity     

       

 

 

 

 

[Dent, Dutta, Saridakis  JCAP 1101] 

m

m




 

E.N.Saridakis – 11th HAC,Athens, Sept. 2013 



18 

 Bounce and Cyclic behavior 

 Contracting (        ), bounce (         ), expanding (         ) 

                    near and at the bounce                        
 

 Expanding (         ), turnaround (         ), contracting 

                    near and at the turnaround 
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 Bounce and Cyclic behavior in f(T) cosmology 

 Contracting (        ), bounce (         ), expanding (         ) 

                    near and at the bounce                        
 

 Expanding (         ), turnaround (         ), contracting 

                    near and at the turnaround 
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 Bounce in f(T) cosmology 

 Start with a bounching scale factor:         
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 Bounce in f(T) cosmology 

 Start with a bounching scale factor:         

 

 

 

 

 Examine the full perturbations: 
 

                                                    with                known in terms of                             and matter 

 

                                                                                        
 

      Primordial power spectrum: 

      Tensor-to-scalar ratio: 
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 Non-minimally coupled scalar-torsion theory 

 In curvature-based gravity, apart from             one can use  

 Let’s do the same in torsion-based gravity:    
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 Non-minimally coupled scalar-torsion theory 

 In curvature-based gravity, apart from             one can use  

 Let’s do the same in torsion-based gravity:    

 

 

 Friedmann equations in FRW universe: 

 

 

    with effective Dark Energy sector: 

 

 

 Different than non-minimal quintessence! 

      (no conformal transformation in the present case) 
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 Non-minimally coupled scalar-torsion theory 

 Main advantage: Dark Energy may lie in the phantom regime or/and 
experience the phantom-divide crossing 

 Teleparallel Dark Energy: 

 

 

     

 

 

 

 

 

 

[Geng, Lee, Saridakis, Wu  PLB 704] 
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Observational constraints on Teleparallel Dark Energy 

 Use observational data (SNIa, BAO, CMB) to constrain the 
parameters of the theory 

 Include matter and standard radiation: 

 We fit                      for various  
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Observational constraints on Teleparallel Dark Energy 

                                                                           

 

                      Exponential potential 

              

                                      

     

 

 

 

 

               Quartic potential 

 

[Geng, Lee, Saridkis   JCAP 1201] 
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Phase-space analysis of Teleparallel Dark Energy 

 Transform cosmological system to its autonomous form: 

                                                       

                

 
 

 
 

 Linear Perturbations: 

 Eigenvalues of     determine type and stability of C.P 
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Phase-space analysis of Teleparallel Dark Energy 

 Apart from usual quintessence points, there exists an extra 
stable one for            corresponding to           

                                                       

                

 
 

[Xu, Saridakis, Leon,  JCAP 1207] 
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 At the critical points               
however during the evolution it can 
lie in quintessence or phantom 
regimes, or experience the phantom-
divide crossing! 
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Exact charged black hole solutions 

 Extend f(T) gravity in D-dimensions (focus on D=3, D=4): 

 
 

 Add E/M sector:                    with   
 

 Extract field equations:  

 

 

 

 

 

   2)(
2

1
TfTexdS D



FFLF


2

1 
dxAAdAF  ,

SHRSHL .... 
[Gonzalez, Saridakis, Vasquez,  JHEP 1207] 

[Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302] 

E.N.Saridakis – 11th HAC,Athens, Sept. 2013 



30 

Exact charged black hole solutions 

 Extend f(T) gravity in D-dimensions (focus on D=3, D=4): 

 
 

 Add E/M sector:                    with   
 

 Extract field equations:  

 

 Look for spherically symmetric solutions: 

 

 

 

 

 Radial Electric field:                                         known 
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Exact charged black hole solutions 

 Horizon and singularity analysis: 

 

 1) Vierbeins, Weitzenböck connection, Torsion invariants: 

    T(r) known        obtain horizons and singularities 

 

 2) Metric, Levi-Civita connection, Curvature invariants: 

    R(r) and Kretschmann                  known  

           obtain horizons and singularities 

 

 

 

 

 

 

 

[Gonzalez, Saridakis, Vasquez,  JHEP1207], [Capozzielo, Gonzalez, Saridakis, Vasquez,  JHEP 1302] 
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Exact charged black hole solutions 

 

 

 

 

 [Capozzielo, Gonzalez, Saridakis, Vasquez,  JHEP 1302] 
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Exact charged black hole solutions 

 More singularities in the curvature analysis than in torsion analysis! 

    (some are naked) 

 The differences disappear in the f(T)=0 case, or in the uncharged case. 

 

 Should we go to quartic torsion invariants? 

 

 f(T) brings novel features. 

 

 E/M in torsion formulation was known to be nontrivial (E/M in Einstein-
Cartan and Poinaré theories) 
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Solar System constraints on f(T) gravity 

 Apply the black hole solutions in Solar System: 

 Assume corrections to TEGR of the form  
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Solar System constraints on f(T) gravity 

 Apply the black hole solutions in Solar System: 

 Assume corrections to TEGR of the form  

 

 

 

 Use data from Solar System orbital motions: 

 
      T<<1 so consistent 

 f(T) divergence from TEGR is very small 

 This was already known from cosmological observation constraints up to  

                                        

 With Solar System constraints, much more stringent bound. 
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 Perturbations:                         , clustering growth rate: 
 

  γ(z): Growth index.     

36 

Growth-index constraints on f(T) gravity 
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Growth-index constraints on f(T) gravity 
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mmeffmm GH  42  
 Perturbations:                         , clustering growth rate: 

 

  γ(z): Growth index.     

 
 

 

 

 
        

 

  

                                        

 Viable f(T) models are practically indistinguishable from ΛCDM. 
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Open issues of f(T) gravity 

 f(T) cosmology is very interesting. But f(T) gravity and nonminially 
coupled teleparallel gravity has many open issues 

 

 For nonlinear f(T), Lorentz invariance is not satisfied  

 Equivalently, the vierbein choices corresponding to the same metric are 
not equivalent (extra degrees of freedom) 
 

 

 

[Li, Sotiriou, Barrow PRD 83a],  

[Li,Sotiriou,Barrow PRD 83c], [Li,Miao,Miao JHEP 1107]  

[Geng,Lee,Saridakis,Wu  PLB 704] 
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Open issues of f(T) gravity 

 f(T) cosmology is very interesting. But f(T) gravity and nonminially 
coupled teleparallel gravity has many open issues 

 

 For nonlinear f(T), Lorentz invariance is not satisfied  

 Equivalently, the vierbein choices corresponding to the same metric are 
not equivalent (extra degrees of freedom) 
 

 Black holes are found to have different behavior through curvature and 
torsion analysis 

 Thermodynamics also raises issues  
 

 Cosmological, Solar System and Growth Index observations constraint f(T) 
very close to linear-in-T form  

 

 

[Li, Sotiriou, Barrow PRD 83a],  

[Li,Sotiriou,Barrow PRD 83c], [Li,Miao,Miao JHEP 1107]  

 [Capozzielo, Gonzalez, Saridakis, Vasquez  JHEP 1302] 

[Bamba,Geng JCAP 1111], [Miao,Li,Miao JCAP 1111] 

[Geng,Lee,Saridakis,Wu  PLB 704] 
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Gravity modification in terms of torsion? 

 So can we modify gravity starting from its torsion formulation? 
 

 The simplest, a bit naïve approach, through f(T) gravity is interesting, but 
has open issues 
 

 Additionally, f(T) gravity is not in correspondence with f(R) 
 

 Even if we find a way to modify gravity in terms of torsion, will it be still in 
1-1 correspondence with curvature-based modification? 
 

 What about higher-order corrections, but using torsion invariants (similar 
to Gauss Bonnet, Lovelock, Hordenski modifications)? 
 

 Can we modify gauge theories of gravity themselves? E.g. can we modify 
Poincaré gauge theory?  
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Conclusions 

 i) Torsion appears in all approaches to gauge gravity, i.e to the first step 
of quantization.   

 ii) Can we modify gravity based in its torsion formulation? 

 iii) Simplest choice: f(T) gravity, i.e extension of TEGR 

 iv) f(T) cosmology: Interesting phenomenology. Signatures in growth 
structure. 

 v) We can obtain bouncing solutions 

 vi) Non-minimal coupled scalar-torsion theory             : Quintessence, 
phantom or crossing behavior. 

 vii) Exact black hole solutions. Curvature vs torsion analysis. 

 viii) Solar system constraints: f(T) divergence from T less than 

 ix)  Growth Index constraints: Viable f(T) models are practically 
indistinguishable from ΛCDM. 

 x) Many open issues. Need to search for other torsion-based 
modifications too. 

 
   

 

2ξTT 

1010
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Outlook 

  Many subjects are open. Amongst them: 
 

 i) Examine thermodynamics thoroughly. 
 

 ii) Extend f(T) gravity in the braneworld. 
 

 iii) Understand the extra degrees of freedom and the extension to 
non-diagonal vierbeins. 
 

 iv) Try to modify TEGR using higher-order torsion invariants. 
 

 v) Try to modify Poincaré gauge theory (extremely hard!) 
 

 vi) What to quantize? Metric, vierbeins, or connection? 
 

 vii) Convince people to work on the subject!  
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THANK YOU! 
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