Adventures in the microlensing cloud

Georgios Vernardos

Christopher Fluke, Nick Bate, Darren Croton

Centre for Astrophysics and Supercomputing Swinburne University of Technology

Quasars and Supermassive black holes

Quasars and Supermassive black holes

Quasars \rightarrow feedback \rightarrow galaxy formation and evolution

Quasar luminosities : $10^{11} < L/L_{\odot} < 10^{16}$

You are here

You are here

You are here

(Strong) gravitational lensing

Images : HST NASA/ESA

Einstein rings, arcs, multiple images, magnifications...

(Strong) gravitational lensing

The Einstein cross (QSO-2237)

Images : HST NASA/ESA

 $z_{\text{source}} = 1.69$ $z_{\text{lens}} = 0.04$

Position of images Image fluxes (Time delays)

Solve lens equation for *mass distribution*

Output

magnifications κ : convergence γ : shear

Position of images Image fluxes (Time delays)

Ready to :

Solve lens equation for *mass distribution*

magnifications κ : convergence γ : shear

Output

study structure and substructure of the lens galaxy study high redshift sources perform cosmological measurements

...

Position of images Image fluxes (Time delays)

Ready to :

Solve lens equation for *mass distribution*

Output

magnifications κ : convergence γ : shear

study structure and substructure of the lens galaxy study high redshift sources perform cosmological measurements

But not the accretion disc yet!

uncorrelated variability due to the lens
models predict constant magnification

• we assumed smooth matter only...

uncorrelated variability due to the lens
models predict constant magnification
we assumed smooth matter only...

uncorrelated variability due to the lens
models predict constant magnification
we assumed smooth matter only...

compact objects near the line of sight + relative motion + accretion disc size

Quasar microlensing

Quasar microlensing : present

SINGLE OBJECTS

- Mass function, stellar mass fraction (lens galaxy) (Poindexter et al. 2010, Mediavilla et al. 2009, Pooley et al. 2009)
- Size of the broad line region, X-ray emission (Floyd et al. 2012, Sluse et al. 2011, Dai et al. 2010)
- Accretion disk size and profile, black-hole (Blackburne et al. 2011, Morgan et al. 2010)

Quasar microlensing : present

SINGLE OBJECTS

- Mass function, stellar mass fraction (lens galaxy) (Poindexter et al. 2010, Mediavilla et al. 2009, Pooley et al. 2009)
- Size of the broad line region, X-ray emission (Floyd et al. 2012, Sluse et al. 2011, Dai et al. 2010)
- Accretion disk size and profile, black-hole (Blackburne et al. 2011, Morgan et al. 2010)

Currently there are ~90 known lensed quasars (CASTLES) ~23 systems have been studied using microlensing

Number of systems is low due to difficulties in observing (continuous monitoring, multi-wavelength)

Quasar microlensing : future

Future synoptic all-sky surveys, like *LSST,* are expected to find ~8000 new multiply imaged quasars ~3000 of which might be suitable for microlensing (*Oguri et al 2010*)

SINGLE OBJECTS STATISTICAL SAMPLES

Quasar microlensing : future

Future synoptic all-sky surveys, like *LSST,* are expected to find ~8000 new multiply imaged quasars ~3000 of which might be suitable for microlensing (*Oguri et al 2010*)

SINGLE OBJECTS STATISTICAL SAMPLES

• Can microlensing constrain accretion discs in the future?

Quasar microlensing : future

Future synoptic all-sky surveys, like *LSST,* are expected to find ~8000 new multiply imaged quasars ~3000 of which might be suitable for microlensing (*Oguri et al 2010*)

SINGLE OBJECTS STATISTICAL SAMPLES

• Can microlensing constrain accretion discs in the future?

a lot of computational power needed !!!

Source plane

24.00

Embarrassingly parallel

- Light rays are independent
- Deflections are independent

Images: C. Fluke

Lens plane

Source plane

Embarrassingly parallel

- Light rays are independent
- Deflections are independent

Direct inverse ray-shooting technique (Thompson et al. 2010, Bate et al. 2010)

Graphics Processing Units, GPUs

CAS, Swinburne

Lens plane

GPU supercomputers (like gSTAR)

	Wambsganss 1992	Lewis & Irwin 1995	GERLUMPH* 2013
method	tree code	contours	direct
pixels	512	_	10000
Total	64	61	~50000

* GPU-Enabled High-Resolution Micro-Lensing parameter survey (Bate & Fluke 2012)

	Wambsganss 1992	Lewis & Irwin 1995	GERLUMPH* 2013
method	tree code	contours	direct
pixels	512	_	10000
Total	64	61	~50000

* GPU-Enabled High-Resolution Micro-Lensing parameter survey (Bate & Fluke 2012)

External

Convergence, κ describes the focusing power of the lenses **Shear**, γ distortion applied by external mass

	Wambsganss 1992	Lewis & Irwin 1995	GERLUMPH* 2013
method	tree code	contours	direct
pixels	512	_	10000
Total	64	61	~50000

* GPU-Enabled High-Resolution Micro-Lensing parameter survey (Bate & Fluke 2012)

External	Convergence, κ describes the focusing power of the lenses Shear, γ distortion applied by external mass			
Microlensing	mass of the microlenses positions of the microlenses map width including smooth matter	(Wambsganss 1992, Lewis & Irwin 1995) (Vernardos & Fluke 2013) (Vernardos & Fluke 2013) (Vernardos et al. 2013, refereed)		
Accretion disc	size temperature profile other	in progress		

	Wambsganss 1992	Lewis & Irwin 1995	GERLUMPH* 2013
method	tree code	contours	direct
pixels	512	_	10000
Total	64	61	~50000

* GPU-Enabled High-Resolution Micro-Lensing parameter survey (Bate & Fluke 2012)

Magnification Probability Distribution (MPD)

Magnification Probability Distribution (MPD)

к, ү parameter space

23 systems27 κ,γ pairs256 κ,γ pairs64 individual maps

κ,γ parameter space

23 systems 256 κ,γ pairs

K 170 maps, 14 GPU days

GERLUMPH 0: 15 different random realizations

Vernardos & Fluke 2013

Kolmogorov-Smirnov tests

Null hypothesis : same distributions failed test : p value < 0.05

Vernardos & Fluke 2013

Kolmogorov-Smirnov tests

Null hypothesis : same distributions failed test : p value < 0.05

There are areas of parameter space where one map may not be representative

GERLUMPH I: Compact and smooth matter

What's next?

	GERLUMPH 0	GERLUMPH I	GERLUMPH II
(κ,γ)	170	1122	3753
S	1	11	11
lens positions	15	1	1
resolution	4096	10000	10000
total	2550	12342	45705

	GERLUMPH 0	GERLUMPH I	GERLUMPH II
(κ,γ)	170	1122	3753
S	1	11	11
lens positions	15	1	1
resolution	4096	10000	10000
total	2550	12342	45705

GERLUMPH I

Can microlensing constrain accretion discs in the future? (predictions in the κ,γ parameter space)

GERLUMPH II

Is all of quasar microlensing correct? (perturbations in the κ,γ)

	GERLUMPH 0	GERLUMPH I	GERLUMPH II
(κ,γ)	170	1122	3753
S	1	11	11
lens positions	15	1	1
resolution	4096	10000	10000
total	2550	12342	45705
status	complete	complete	ongoing
size (TB)	0.16	4.5	16.9
GPU time	213 days	2902 days	15805 days

GERLUMPH I

Can microlensing constrain accretion discs in the future? (predictions in the κ,γ parameter space)

GERLUMPH II

Is all of quasar microlensing correct? (perturbations in the κ,γ)

Conclusions

Microlensing parameter space

a few systems now (23), thousands in the future

eResearch

Much easier to test a variety of alternative accretion disc/SMBH models once we have statistically significant samples

gerlumph.swin.edu.au

Science with magnification maps: Light-curve analysis

Figure : Schmidt & Wambsganss 2010

Smaller sources appear more magnified

Science with magnification maps: Chromatic lensing

 λ_1 , λ_2 , λ_3 R_1, R_2, R_3

Thin disk model Shakura Sunyaev 1973

 $T \propto R^{\beta}, \beta = -3/4$

 $p(F_{12})$ $p(F_{13})$ $p(F_{23})$ Science with magnification maps: Chromatic lensing

 λ_1 , λ_2 , λ_3 R_1, R_2, R_3

Thin disk model Shakura Sunyaev 1973

 $T \propto R^{\beta}, \beta = -3/4$

 $p'(F_{12})$ $p'(F_{13})$ $p'(F_{23})$

$$oldsymbol{y} = egin{pmatrix} 1 - \gamma & 0 \ 0 & 1 + \gamma \end{pmatrix} oldsymbol{x} - \kappa_s oldsymbol{x} - \sum_{i=1}^{N_l} m_i rac{(oldsymbol{x} - oldsymbol{x}_i)}{|oldsymbol{x} - oldsymbol{x}_i|^2}$$

$$R_{\lambda}^{theory} = 9.7 \times 10^{15} \left(\frac{\lambda_{rest}}{\mu m}\right)^{4/3} \left(\frac{M_{BH}}{10^9 M_{\odot}}\right)^{2/3} \left(\frac{L}{\eta L_E}\right)^{1/3} cm$$

For objects with $M \sim M_{\odot} \Rightarrow \theta_{E} \sim \mu$ arcsec: the projected R_{Ein} is comparable to the accretion disc size

Micro-models

Direct inverse ray-shooting "Ridiculously parallelizable problem"

+ GPUs

