The DWARF project

P.-E. Christopoulou Ass. Prof, Dept. of Physics, University of Patras

11th HELLENIC ASTRONOMICAL CONFERENCE Athens, 8 - 12 September 2013

PROJECT DWARF

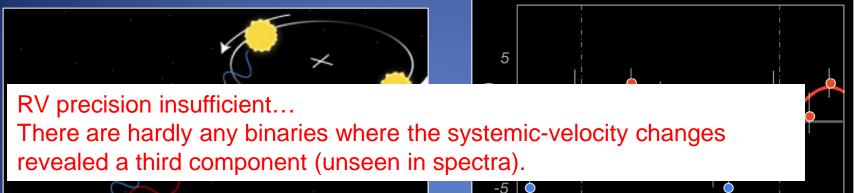
Initiated and organized by Dr. Th. Pribulla, Astronomical Institute Slovak Academy of Sciences

The DWARF project: Eclipsing binaries - precise clocks to discover exoplanets

T. Pribulla^{1,*}, M. Vaňko¹, M. Ammler - von Eiff², M. Andreev^{3,4}, A. Aslantürk⁵, N. Awadalla⁶, D. Baluďanský⁷, A. Bonanno⁸, H. Božić⁹, G. Catanzaro⁸, L. Çelik^{10,11}, P.E. Christopoulou¹², E. Covino¹³, F. Cusano¹⁴, D. Dimitrov¹⁵, P. Dubovský¹⁶, E.M. Esmer^{10,11}, A. Frasca⁸, L. Hambálek¹, M. Hanna⁶, A. Hanslmeier¹⁷, B. Kalomeni¹⁸, D. P. Kjurkchieva¹⁹, V. Krushevska²⁰, I. Kudzej¹⁶, E. Kundra¹, Yu. Kuznyetsova²⁰, J.W. Lee²¹, M. Leitzinger¹⁷, G. Maciejewski²², D. Moldovan²³, M.H.M. Morais²⁴, M. Mugrauer²⁵, R. Neuhäuser²⁵, A. Niedzielski²², P. Odert¹⁷, J. Ohlert^{26,27}, I. Özavcı^{10,11}, A. Papageorgiou¹², Š. Parimucha²⁸, S. Poddaný^{29,30}, A. Pop²³, M. Raetz³¹, S. Raetz²⁵, Ya. Romanyuk⁴, D. Ruždjak⁹, J. Schulz³², H.V. Şenavcı^{10,11}, T. Szalai³³, P. Székely³⁴, D. Sudar⁹, C.T. Tezcan^{10,11}, M.E. Törün^{10,11}, V. Turcu²³, O. Vince³⁵, and M. Zejda³⁵

22-7-2013 727 planetary systems / 942 planets / 146 multiple planet systems

S-Type the planet moves around one of the two stars
P-Type the planet moves around the entire binary- circum-binary planets (Muterspough et al. 2007)
Simulations show either of above possibilities has a large range of stable configurations (see e.g., Broucke 2001; Pilat-Lohinger & Dvorak 2002; Pilat-Lohinger et al. 2003; Benest 2003 Moriwaki & Nakagawa 2004; Quintana & Lissauer 2006; Pierens & Nelson 2008).

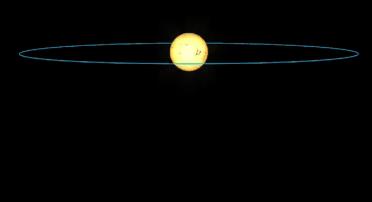

HOW we detect circubinary planets?

un 2012

FAR FROM EASY

Three principal Techniques

1. Precise radial velocity measuremets to detect the wobble of the binary mass center (Konacki et al. 2009)



Photometric detection of transits of the planets (s) across the disk of the components of the inner binary
 (Device et al. 2011)

Very long photometric runs with excellent accuracy

3 systems Kepler-16b (Doyle et al., 2011), Kepler-34b and Kepler-35b (Welsh et al. 2012).

3. Timing of the inner binary eclipses (Lee et al. 2009)

2. Previous and ongoing searches of circumbinary exoplanets by timing technique

Pulse arrival time (PSR1257+12,Wolszczan & Frail, 1992). Timing of the eclipses in binary stars LITE

• (Pribulla & Rucinski, 2006; Beuermann et al. 2011)

Existence of low mass planetary binaries

- CM Dra (Deeg et al. 2008; Ofir 2008)
- HW Vir (a short-period EB system composed of an sdB and an M dwarf) with two-planets (*Lee et al. 2009, Horner et al. 2012*)

Around post common envelope systems (WD+MS latetype

By March 23 2012 11 planetary systems (16 planets/4 multiple systems) detected by timing

ra &

Hric, 2011)

• NN SE(Beuermann et al. 2010), UZ For (Potter et al. 2011), DP Leo (Qian et al. 2010), RR Cae (Qian et al. 2012).

The only larger iniative....SOLARIS global network of four 50cm robotic telescopes (Australia, Africa and South America) (Konacki et al. 2011).

The Archival DATA play important role (...long periods)

Krakow database prepared and frequently updated by Prof. Kreiner (http://www.as.up.krakow.pl/ephem/)

Mt. Suhora Astronomical Observatory

(O-C) Atlas Linear ephemerides Statistics of minima database Add new minima W UMa stars

All stars in one file (TXT) allstars.cat (ASCII) SIMBAD GCVS Old ephemerides

UP-TO-DATE LINEAR ELEMENTS OF ECLIPSING BINARIES

prepared by J.M. Kreiner, sfkreine@cyf-kr.edu.pl

 And | Ant | Aps | Aqr | Aql | Ara | Ari | Aur | Boo | Cae | Cam | Cnc | CVn | CMa | CMi | Cap | Car | Cas | Cen | Cep | Cet | Cha | Cir | Com | Col | CrA | CrB | Crv | Crt | Cru | Cyg |

 Del | Dor | Dra | Equ | Eri | For | Gem | Gru | Her | Hor | Hya | Hyi | Ind | Lac | Leo | LMi | Lep | Lib | Lup | Lyr | Men | Mic | Mon | Mus | Nor | Oct | Oph | Ori | Pav | Peg | Per |

 Phe | Pic | Psc | PsA | Pup | Pyx | Ret | Sge | Sgr | Sco | Scl | Sct | Ser | Sex | Tau | Tel | Tri | TrA | Tuc | UMa | UMi | Vel | Vir | Vol | Vul

Stars near eclipse | Eccentric orbit stars | Other stars

The database is described in the paper: "Up-to-date Linear Elements of Close Binaries", J.M. Kreiner, 2004, Acta Astronomica, vol. 54, pp 207-210. Please include a citation when using the database for your research. This project was partly supported by KBN grant No 2 P03D 006 22.

Current orbital phase is calculated based on YOUR COMPUTER TIME !!!!

Advantages

➢it is complementary to the competing project SOLARIS covering the Southern hemisphere

it uses only existing facilities

Increasing chance of new detection(s)

it is a unique collaboration of many observatories

3. Target Selection
objects with sharp and deep minima
(i) systems with K or/and M dwarf components
(ii) systems with hot subdwarf (sdB or sdO) and K or M dwarf components
iii) post-common envelope systems with a white dwarf (WD) component

NSVS data (Hoffman et al., 2008), HAT network data (Hartman et al., 2011) and ASAS data (see Pojmanski, 2002; Pojmanski 2003, Pojmanski & Maciejewski, 2004ab;Pojmanski et al., 2005)

Objects North of DEC = -10° with P<5 d , R = 10-17mag

Maximum amount of information but also neglected systems. Follow up observations...

Preliminary target list

Table 1 Target list

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 Ref. 1 (1) (2) (6 (3) 3 (4) (5) 9 (6) (9) (7)
PTTEB11.441 00 +5 +6.0 +41 50 30 0.51 0.35 M3.5*WD 5.0 55438.3165 0.35871000 0.20 0.00 16.3 NSV5 06507557 01 58 23.9 +25 21 20 0.66 0.28 K9+M3 4.7 54746.3801 0.51508836 0.70 0.23 0.062 13.4 12.5 4.2 V449 Par 02 57 33.5 +33 1401 0.26 M1V+M4V 0.03 5.4 5132004960 0.94620690 0.72 13.4 12.5 4.2 V419 Par 03 44 32.2 +39 935 0.28 M4V 0.02 5.9 54734.9959 0.7712000 0.21 0.19 0.039 14.0 15.6 3.3 NLTT11748 03 44 516.8 +17 46 09 0.28 0.27 WD+WD 6.6 53619.4264 0.11601549 0.55 0.11 16.6 16.3 V471 Taw 03 50 25.0 +12 544 0.46 M4V+M5V 544971.1710 0.66395310 0.30 0.10 14.3 14.4 14.7 15.2 13.3 HAT-131-0026711 051 63.6.9 +48 55 44 0.48 <th>(2) 6 (3) 3 (4) 9 (6) 9 (9)</th>	(2) 6 (3) 3 (4) 9 (6) 9 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 (3) 3 (4) (5) 9 (6) (9)
BX Tri 02 20 50.8 +33 20 48 0.31 0.26 MIV+M4V 0.03 5.4 51352.0616 0.19263390 0.33 0.27 0.072 13.4 12.5 4.2 V449 Par 02 57 33.5 +33 14 01 52500.9069 0.94620690 0.21 0.19 0.039 14.0 13.5 6.3 V912 Par 03 44 32.2 +39 99 35 0.28 0.27 WD+WD 6.6 53619.4264 0.11601549 0.55 0.11 16.7 16.3 V471 Tan 03 50 25.0 +17 14 47 K2V+DA 52500.1267 0.97197470 0.03 0.00 9.5 9.5 HAT-131-0026711 01 56 352.4 M4V+M5V 54471.3745 2.04613610 0.00 15.2 13.3 V470 Cam 07 10 42.1 +66 55 44 0.48 0.13 sdB+M 0.04 6.3 51822.7598 0.09564665 1.00 0.20 0.15 4.7 14.6 1.2 V470 Cam 07 14 57.4 +31 52.0 0.60 dB+M	3 (4) (5) 9 (6) (9)
	0 9 (6) (9)
GJ 3236 03 37 14.1 +69 10 50 0.38 0.28 M4V 0.02 5.9 54734.9959 0.77126000 0.21 0.19 0.039 14.0 13.3 6.3 V912 Per 03 44 32.2 +39 59 35 0.27 WD+WD 53287.8323 0.57759120 0.22 0.20 13.1 NLTT11746 03 50 25.0 +17 14 47 K2V+DA 52500.3434 0.52118357 0.03 0.00 9.5 9.5 HAT-216-0003316 04 40 23.0 +31 26 46 M4V+M5V 52500.1267 0.97197470 13.0 15.2 13.3 HAT-131-0026711 05 16 36.9 +48 35 44 0.03 53632.4735 1.59457150 0.40 0.16 0.096 13.8 4.8 V470 Cmm 07 10 42.1 +66 55 544 0.48 0.13 sdB+M 0.04 6.3 5122.758 0.9564665 1.00 0.20 0.15 14.7 14.6 1.2 YY Gem 073 4 37.4 +31 52 10 0.60 0.60 dM1e 0.06 4.0 52500.5766 1.00 0.40 0.45 1.29 3.0	9 (6) (9)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(9)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
AP Tan 04 54 45.0 +26 55 24 52500.1267 0.97197470 13.0 HAT-131-0026711 05 16 36.9 +48 35 44 54497.1710 0.66395310 0.30 0.10 14.3 HAT-133-0002525 06 36 25.2 +43 49 47 0.03 53632.4735 1.59457150 0.40 0.16 0.096 13.8 4.8 V470 Cam 07 10 42.1 +66 55 44 0.48 0.13 ±dB+M 0.04 6.3 51632.798 0.09564665 1.00 0.20 0.015 14.7 14.6 1.2 YY Gem 07 14 37.4 +31 52 10 0.60 0.60 dM1e 0.06 4.0 52500.4573 0.81428330 0.55 0.50 10.6 9.1 HAT-136-0003262 08 11 37.6 +19 23 39 0.43 0.40 M5Ve 0.03 5.1 50208.5068 2.77146800 0.13 0.11 0.063 12.1 11.4 6.1 NSVS 02502726 08 44 11.0 +54 23 47 0.71 0.35 K5V+MIV 0.04 3.5 54497.5502 0.55975500 0.50 0.35 0.084 14.0	(8)
HAT-131-0026711 05 16 36.9 +48 35 44 54497.1710 0.66395310 0.30 0.10 14.3 HAT-133-0002525 06 36 25.2 +43 49 7 0.03 53632.4735 1.59457150 0.40 0.16 0.096 13.8 4.8 VY Cam 07 10 42.1 +66 53 44 0.48 0.13 sdB+M 0.04 6.3 51822.7596 0.09564665 1.00 0.20 0.015 14.7 14.6 1.2 YY Gam 07 34 37.4 +31<52	(9)
HAT-133-0002525 06 36 2 5.2 +43 49 47 0.03 53632.4735 1.59457150 0.40 0.16 0.096 13.8 4.8 V470 Cam 07 10 42.1 +66 55 44 0.48 0.13 sdB+M 0.04 6.3 51822.7598 0.09564665 1.00 0.20 0.015 14.7 14.6 1.2 YY Gem 07 34 37.4 +31 52 10 0.60 0.60 dM1e 0.06 4.0 52500.4573 0.81428330 0.55 0.50 10.6 9.1 HAT-136-0003262 08 11 34.8 +43 02 33 33 33770.8395 0.64948470 0.60 0.65 0.071 14.3 3.4 GSC 1941 1746 08 25 51.9 +24 27 04 0.56 0.65 M2V+M2V 4.0 53700.7303 2.26560000 0.90 0.40 0.453 12.9 3.0 GSC 1949 246 09 16 12.3 +36 15 34 0.68 0.73 M3V+M3V 3.6 53456.6763 0.36697100 0.90 0.40 0.413 1.4 3.9 GSC 2499 246 09 16 12.3 +36 15 34 0.68 0.73 <td< td=""><td>(5)</td></td<>	(5)
V470 Cam 07 10 42.1 +66 55 44 0.48 0.13 sdB+M 0.04 6.3 51822.7598 0.09564665 1.00 0.20 0.015 14.7 14.6 1.2 YY Gem 07 34 37.4 +31 52 10 0.60 0.60 dM1e 0.06 4.0 52500.4573 0.81428330 0.55 0.50 10.6 9.1 HAT-136-0003262 08 11 34.8 +43 02 33 5 0.65 M2V+M2V 4.0 53770.8395 0.64948470 0.60 0.65 0.071 14.3 3.4 GSC 1941 1746 08 25 51.9 +24 27 04 0.56 0.65 M2V+M2V 4.0 53730.7303 2.26560000 0.90 0.40 0.453 12.9 3.4 NSVS 02502726 08 44 11.0 +54 23 47 0.71 0.35 K5V+M1V 0.04 4.3 54497.5502 0.5975500 0.50 0.35 0.084 14.0 13.4 3.9 GSC 2499 246 09 16 12.3 +36 15 34 0.68 0.73 M3V+M3V 3.6 53456.6763 0.36697100 0.90 0.60 0.070 12.5	(9)
YY Gem 07 34 37.4 +31 52 10 0.60 dM1e 0.06 4.0 52500.4573 0.81428330 0.55 0.50 10.6 9.1 HAT-136-0003262 08 11 34.8 +43 02 33 53770.8395 0.64948470 0.60 0.65 0.071 14.3 3.4 GSC 1941 1746 08 25 51.9 +24 27 04 0.56 0.65 M2V+M2V 4.0 53730.7303 2.26560000 0.90 0.40 0.453 12.9 3.0 CU Cnc 08 31 37.6 +19 23 39 0.43 0.40 M5Ve 0.03 5.1 50208.5068 2.77146800 0.13 0.11 0.083 12.1 11.4 6.1 NSVS 02502726 08 44 11.0 +54 23 47 0.71 0.35 K5V+M1V 0.04 4.3 54497.5502 0.59657500 0.50 0.35 0.084 14.0 13.4 3.9 GSC 2499 246 09 16 12.3 +36 15 34 0.68 0.73 M3V+M3V 3.6 53456.6763 0.36697100 0.90 0.60 0.070 12.5 1.0 HAT-225-0003429 09 21 28.4 +3	(9)
HAT-136-0003262 08 11 34.8 +43 02 33 33770.8395 0.64948470 0.60 0.65 0.071 14.3 3.4 GSC 1941 1746 08 25 51.9 +24 27 04 0.56 0.65 M2V+M2V 4.0 53730.7303 2.26560000 0.90 0.40 0.453 12.9 3.0 CU Cnc 08 31 37.6 +19 23 39 0.43 0.40 M5Ve 0.03 5.1 50208.5068 2.77146800 0.13 0.11 0.083 12.1 11.4 6.1 NSVS 02502726 08 44 11.0 +54 23 47 0.71 0.35 K5V+MIV 0.04 4.3 54497.5502 0.5975500 0.50 0.35 0.084 14.0 13.4 3.9 GSC 2499 246 09 16 12.3 +36 15 34 0.68 0.73 M3V+M3V 3.6 53456.6763 0.36697100 0.90 0.60 0.070 12.5 1.0 HAT-225-0003429 09 21 28.4 +33 25 59 0.02 54534.1898 0.42647590 0.28 0.27 0.047 14.5 6.6 BS UMa 112 5 41.0 +42 34 50 K	4 (10)
GSC 1941 1746 08 25 51.9 +24 27 04 0.56 0.65 M2V+M2V 4.0 53730.7303 2.26560000 0.90 0.40 0.453 12.9 3.0 CU Cnc 08 31 37.6 +19 23 39 0.43 0.40 M5Ve 0.03 5.1 50208.5068 2.77146800 0.13 0.11 0.083 12.1 11.4 6.1 NSVS 02502726 08 44 11.0 +54 23 47 0.71 0.35 K5V+MIV 0.04 4.3 54497.5502 0.55975500 0.50 0.35 0.084 14.0 13.4 3.9 GSC 2499 246 09 16 12.3 +36 15 34 0.68 0.73 M3V+M3V 3.6 53456.6763 0.36697100 0.90 0.60 0.070 12.5 1.0 HAT-225-0003429 09 21 28.4 +33 25 59 0.02 54534.1898 0.42647590 0.28 0.27 0.047 14.5 6.6 BS UMa 11 24 4 20.2 -08 40 17 0.48 0.14 sdB+M6-7 6.2 52500.0560 0.11671947 0.80 0.15 0.15 0.14 M3V+DA 4.8 52784.5533	(11)
CU Cnc 08 31 37.6 +19 23 39 0.43 0.40 M5Ve 0.03 5.1 50208.5068 2.77146800 0.13 0.11 0.083 12.1 11.4 6.1 NSVS 02502726 08 44 11.0 +54 23 47 0.71 0.35 K5V+MIV 0.04 4.3 54497.5502 0.55975500 0.50 0.35 0.084 14.0 13.4 3.9 GSC 2499 246 09 16 12.3 +36 15 34 0.68 0.73 M3V+M3V 3.6 53456.6763 0.36697100 0.90 0.60 0.070 12.5 1.0 HAT-225-0003429 09 21 28.4 +33 25 59 0.02 54534.1898 0.42647590 0.28 0.27 0.047 14.5 6.6 BS UMa 11 25 41.0 +42 34 50 K9-MIV 0.10 52500.3477 0.34950990 0.41 0.35 0.059 12.5 11.5 2.0 HW Vir 12 44 20.2 -08 40 17 0.48 0.14 sdB+M6-7 6.2 52500.0560 0.11671947 0.80	. (9)
NSVS 02502726 08 44 11.0 +54 23 47 0.71 0.35 K5V+MIV 0.04 4.3 54497.5502 0.55975500 0.50 0.35 0.084 14.0 13.4 3.9 GSC 2499 246 09 16 12.3 +36 15 34 0.68 0.73 M3V+M3V 3.6 53456.6763 0.36697100 0.90 0.60 0.070 12.5 1.0 HAT-225-0003429 09 21 28.4 +33 25 59 0.02 54534.1898 0.42647590 0.28 0.27 0.047 14.5 6.6 BS UMa 11 25 41.0 +42 34 50 K9-MIV 0.10 52500.0560 0.11671947 0.80 0.15 0.014 10.5 0.23 0.27 0.047 14.5 6.6 BS UMa 11 25 41.0 +42 34 50 K9-MIV 0.10 52500.0560 0.11671947 0.80 0.15 0.014 10.5 0.23 11.5 2.0 HW Vir 12 44 20.2 -08 40 17 0.48 0.14 M3V+DA 4.8 52784.5533 0.611671947 0.80 0.15 0.14 10.5 0.23 12.5 11.5 <	3 (12)
GSC 2499 246 09 16 12.3 +36 15 34 0.68 0.73 M3V+M3V 3.6 53456.6763 0.36697100 0.90 0.60 0.070 12.5 1.0 HAT-225-0003429 09 21 28.4 +33 25 59 0.02 54534.1898 0.42647590 0.28 0.27 0.047 14.5 6.6 BS UMa 11 25 41.0 +42 34 50 K9-M1V 0.10 52500.3477 0.34950990 0.41 0.35 0.059 12.5 11.5 2.0 HW Vir 12 44 20.2 -08 40 17 0.48 0.14 sdB+M6-7 6.2 52500.3477 0.34950990 0.41 0.35 0.014 10.5 0.2 2 DE CVn 13 26 53.3 +45 32 47 0.51 0.41 M3V+DA 4.8 52784.5533 0.36413940 0.10 0.00 12.8 12.2 NY NY Vir 13 38 48.1 -02 01 49 0.50 0.15 sdB+M5 6.0 52500.0594 0.10101598 0.90 0.15 0.012 13.3 13.5 0.6 1 NSVS 01031772 13 45 34.9 +79 23 48 0.54	.8 (13)
HAT-225-0003429 09 21 28.4 +33 25 59 K9-MIV 0.02 54534.1898 0.42647590 0.28 0.27 0.047 14.5 6.6 BS UMa 11 25 41.0 +42 34 50 K9-MIV 0.10 52500.3477 0.34950990 0.41 0.35 0.059 12.5 11.5 2.0 HW Vir 12 44 20.2 -08 40 17 0.48 0.14 sdB+M6-7 6.2 52500.3477 0.34950990 0.41 0.35 0.014 10.5 0.2 3 DE CVn 13 26 53.3 +45 32 47 0.51 0.41 M3V+DA 4.8 52784.5533 0.36413940 0.10 0.00 12.8 12.2 NY Vir 13 38 48.1 -02 01 49 0.50 0.15 sdB+M5 6.0 52500.0594 0.10101598 0.90 0.15 0.012 13.3 13.5 0.6 1 NSVS 01031772 13 45 34.9 +79 23 48 0.54 0.50 M2V 0.02 4.4 53456.6796 0.36814140 0.60 0.60 0.055 12.6 11.0 0.8 HAT-145-000156 13 4	.1 (14)
BS UMa 11 25 41.0 +42 34 50 K9-MIV 0.10 52500.3477 0.34950990 0.41 0.35 0.059 12.5 11.5 2.0 HW Vir 12 44 20.2 -08 40 17 0.48 0.14 sdB+M6-7 6.2 52500.3477 0.34950990 0.41 0.35 0.059 12.5 11.5 2.0 DE CVn 13 26 53.3 +45 32 47 0.51 0.41 M3V+DA 4.8 52784.5533 0.36413940 0.10 0.00 12.8 12.2 NY Vir 13 38 48.1 -02 01 49 0.50 0.15 sdB+M5 6.0 52500.0594 0.10101598 0.90 0.15 0.012 13.3 13.5 0.6 12.8 12.2 NS VS 01031772 13 45 34.9 +79 23 48 0.54 0.50 M2V 0.02 4.4 53456.6796 0.36814140 0.60 0.05 0.055 12.6 11.0 0.8 HAT-145-0001586 13 45 13.2 +46 18 40 0.01 53843.9266 1.58757110	.6
HW Vir 12 44 20.2 -08 40 17 0.48 0.14 sdB+M6-7 6.2 52500.0560 0.11671947 0.80 0.15 0.014 10.5 0.2 3 DE CVn 13 26 53.3 +45 32 47 0.51 0.41 M3V+DA 4.8 52784.5533 0.36413940 0.10 0.00 12.8 12.2 NY Vir 13 38 48.1 -02 01 49 0.50 0.15 sdB+M5 6.0 52500.0594 0.10101598 0.90 0.15 0.012 13.3 13.5 0.61 NSVS 01031772 13 45 34.9 +79 23 48 0.54 0.50 M2V 0.02 4.4 53456.6796 0.36814140 0.60 0.055 12.6 11.0 0.8 HAT-145-0001586 13 45 13.2 +46 18 40 0.01 53843.9266 1.58752710 0.65 0.55 0.064 14.3 3.1 GK Boo 15 21 54.8 +33 56 09 0.60 0.59 M0/M1.5 0.15 4.0 52723.9811 0.48871000 0.90 <td< td=""><td>(9) (16)</td></td<>	(9) (16)
DE CVn 13 26 53.3 +45 32 47 0.51 0.41 M3V+DA 4.8 52784.5533 0.36413940 0.10 0.00 12.8 12.2 NY Vir 13 38 48.1 -02 01 49 0.50 0.15 sdB+M5 6.0 52500.0594 0.10101598 0.90 0.15 0.012 13.3 13.5 0.6 1 NSVS 01031772 13 45 34.9 +79 23 48 0.54 0.50 M2V 0.02 4.4 53456.6796 0.36814140 0.60 0.60 0.055 12.6 11.0 0.8 HAT-145-0001586 13 45 13.2 +46 18 40 0.01 53843.9266 1.58752710 0.65 0.55 0.064 14.3 3.1 GK Boo 14 38 20.7 +36 32 25 K2V 0.04 52500.4350 0.47777170 0.92 0.77 0.091 10.6 10.5 0.5 GU Boo 15 21 54.8 +33 56 09 0.60 0.59 M0/M1.5 0.15 4.0 52723.9811 0.48871000 0.90 0.65	
NY Vir 13 38 48.1 -02 01 49 0.50 0.15 sdB+M5 6.0 52500.0594 0.10101598 0.90 0.15 0.012 13.3 13.5 0.6 1 NSVS 01031772 13 45 34.9 +79 23 48 0.54 0.50 M2V 0.02 4.4 53456.6796 0.36814140 0.60 0.60 0.055 12.6 11.0 0.8 HAT-145-0001586 13 45 13.2 +46 18 40 0.01 53843.9266 1.58752710 0.65 0.55 0.064 14.3 3.1 GK Boo 14 38 20.7 +36 32 25 K2V 0.04 52500.4350 0.47777170 0.92 0.77 0.091 10.6 10.5 0.5 GU Boo 15 21 54.8 +33 56 09 0.60 0.59 M0/M1.5 0.15 4.0 52723.9811 0.48871000 0.90 0.65 0.064 13.1 12.9 1.2	18) (18)
NSVS 01031772 13 45 34.9 +79 23 48 0.54 0.50 M2V 0.02 4.4 53456.6796 0.36814140 0.60 0.60 0.055 12.6 11.0 0.8 HAT-145-0001586 13 45 13.2 +46 18 40 0.01 53843.9266 1.58752710 0.65 0.55 0.064 14.3 3.1 GK Boo 14 38 20.7 +36 32 25 K2V 0.04 52500.4350 0.47777170 0.92 0.77 0.091 10.6 10.5 0.5 GU Boo 15 21 54.8 +33 56 09 0.60 0.59 M0/M1.5 0.15 4.0 52723.9811 0.48871000 0.90 0.65 0.064 13.1 12.9 1.2	
HAT-145-0001586 13 45 13.2 +46 18 40 0.01 53843.9266 1.58752710 0.65 0.55 0.064 14.3 3.1 GK Boo 14 38 20.7 +36 32 25 K2V 0.04 52500.4350 0.47777170 0.92 0.77 0.091 10.6 10.5 0.5 GU Boo 15 21 54.8 +33 56 0.90 0.60 0.59 M0/M1.5 0.15 4.0 52723.9811 0.48871000 0.90 0.65 0.064 13.1 12.9 1.2	2 (19)
GK Boo 14 38 20.7 +36 32 25 K2V 0.04 52500.4350 0.47777170 0.92 0.77 0.091 10.6 10.5 0.5 GU Boo 15 21 54.8 +33 56 09 0.60 0.59 M0/M1.5 0.15 4.0 52723.9811 0.48871000 0.90 0.65 0.064 13.1 12.9 1.2	(9)
GUBoo 15 21 54.8 +33 56 09 0.60 0.59 M0/M1.5 0.15 4.0 52723.9811 0.48871000 0.90 0.65 0.064 13.1 12.9 1.2	යින
NSVS 07826147 15 33 49.4 +37 59 28 0.38 0.11 sdB+M5 7.2 54524.0195 0.16177042 1.35 0.20 0.016 13.0 13.4 0.4 1	
G179-55 15 47 27.4 +45 07 51 0.26 0.26 M4 7.0 51232.8953 3.55001840 0.05 0.06 12.5	(9)
NN Ser 15 52 56.1 +12 54 45 0.54 0.11 DAO1+M4 6.0 52500.1209 0.13008015 >2 0.00 16.7	(22)
HAT-192-0001841 16 12 16 7 +41 13 51 0.02 53853 9056 0.30873570 0.62 0.55 0.037 14 0 2.1	(9)
CM Dra 16 34 20.4 +37 09 44 0.23 0.21 M4.5V 0.03 7.7 52500.7177 1.26839010 0.75 0.60 0.038 12.9 10.9 9.9	8 (23)
TrES-Her0-07621 16 50 20.7 +46 39 01 0.49 0.49 M3V+M3V 4.6 53139.7495 1.12079000 0.11 0.10 0.090 15.5 36.8	1 (24)
HAT-196-0006238 17 58 59.3 +35 55 12 53623.7449 1.75834310 14.9	(9)
V924 Oph 18 33 28.3 +07 07 51 0.35955400 12.9	රා
OT Lvt 19 08 10.0 +29 13 42 54222.4568 0.47109500 14.1	රා
FP Sge 20 14 45.8 +19 36 49 52500.2947 0.64200717 14.0	(5)
NSVS 14256825 20 20 00.4 +04 37 56 0.46 0.21 sdO+M2 5.9 51288.9198 0.11037410 0.75 0.20 0.014 13.2 13.3 0.7	9 (25)
FIDel 20 29 16.0 +14 45 59 52500.3 0.41592810 14.6	
MR.Del 20 31 13.5 +05 13 08 0.69 0.63 KOV 0.01 3.7 52500.3087 0.52169040 0.33 0.17 0.073 11.0 8.9 1.4	(5)
RX J2130.6+4710 21 30 18.5 +47 10 07 0.55 0.55 M4V+WD 4.2 52785.6819 0.52103563 >2 0.00 13.0	(5) 7 (26)
HS 2231+2441 22 34 21.5 +24 56 57 0.30 0.30 sdB+dM 6.3 0.11058798 14.0 14.0	
HAT-205-0007777 22 42 07.5 +39 02 44 53146.0021 1.11001010 14.6	.7 (ŻŚ)

Explanation of columns: α_{2000} , δ_{2000} - equatorial coordinates given for epoch and equinox 2000.0; $M_{1,2}$ - masses of the components; spectral classification; A_{OCE} - observed O'Connell effect amplitude expressed as difference in maxima levels; ΔT - amplitude of the LITE for 1 Jupiter mass planet orbiting the binary on 10 years orbit; HJD_I, Period - ephemeris for the primary (deeper) minimum; d_I , d_{II} - minima depth for the I passband (for the V passband typed in italics); D_I - duration of the primary eclipse; V, R - out-of-eclipse brightness of the binary; Δt - theoretically achievable minimum precision using a 60cm telescope (equation \square) for the primary minima; $N_{\sigma} = \Delta T / \Delta t$ detection sensitivity of the binary.

What are the chances to discover a circumbinary substellar body?

i) precision and number of the minima which can be achieved
ii) semi-amplitude of the LITE caused by the body
iii) intrinsic variability of the binary causing noise in minima timings.

precision of a single minimum timing, Δt

Diameter of telescope

$$\Delta t = \frac{1}{\sqrt{\tau F_{\lambda}}} 10^{0.2(m+X\kappa)} \frac{\sqrt{D}}{\sqrt{\pi A}}$$

Henden & Kaitchuck, 1982

LITE amplitude

Max – Min or peak-to-peak changes

Target	α_{2000}	δ_{2000}	M_1	M_2	Sp.type	A_{OCE}	ΔT	HJDI	Period	d_I	d_{II}	D_I	V	R	Δt	N_{σ}	Ref.
_			[M _☉]	[M _☉]		[mag]	[s]	2 400 000+	[days]	[mag]	[mag]	[days]			[s]		
DV Psc	00 13 09.2	+05 35 43	0.49	0.51	K5V+M1V	0.04	4.5	52500.1150	0.30853740	0.32	0.15	0.062	10.6	10.0	1.1	4.1	(1)
PTFEB11.441	00 45 46.0	+41 50 30	0.51	0.35	M3.5+WD		5.0	55438.3165	0.35871000	0.20	0.00			16.3			(2)
NSVS 06507557	01 58 23.9	+25 21 20	0.66	0.28	K9+M3		4.7	54746.3801	0.51508836	0.70	0.23	0.062	13.4	12.6	1.8	2.6	(3)
BX Tri	02 20 50.8	+33 20 48	0.51	0.26	M1V+M4V	0.03	5.4	51352.0616	0.19263590	0.33	0.27	0.072	13.4	12.5	4.2	1.3	(4)
V449 Per	02 57 33.5	+35 14 01						52500.9069	0.94620690					12.5			(5)
GJ 3236	03 37 14.1	+69 10 50	0.38	0.28	M4V	0.02	5.9	54734.9959	0.77126000	0.21	0.19	0.039	14.0	13.5	6.3	0.9	(6)

 $\Delta T \approx \frac{2M_3 G^{1/3}}{c} \left[\frac{P_3}{2\pi (M_1 + M_2)} \right]$

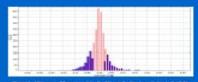
in the case of a Jupiter-mass planet orbiting the EB in 10 years

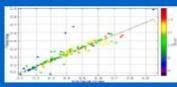
The suitability of an object (N_{σ} in Table 1) can be defined as the peak-to peak amplitude of LITE caused by such a body ΔT , divided by the theoretical precision of a single minimum timing, Δt

20

AN AUTOMATED SEARCH OF O'CONNELL EFFECT FROM

SURVEYS OF ECLIPSING BINARIES

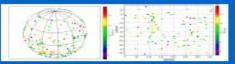

A. Pepageorgine, G. Kiefoglande, & P.-E. Christopoulou antipiperal anomaly reported at Paper, Innuelly of Paren, 2000, Paren, 2000.



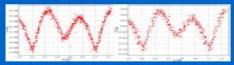
DITEODUCTION

METHOD - STRUCTORY

PERFORMANCE IN ABAD DATABASE


Papers 3. Content of Thing. Indexed by the pair of the singlifiek of variables from how ASSE definition and ASSE₂₀₀₀ against the anglifick of variables the two solubilities from the filling. Officeral of our process for continuous regulation of the outgoing binary spikes.

And and an other designed


What to do ?

REPORT

A base of PTTM relations have the Base means that the Base with the Base of L mouth and a probability. It is the sense of the Second s

pers 3. Representation of the distillation of the subpring View to subling to the di-

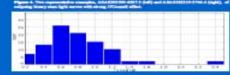
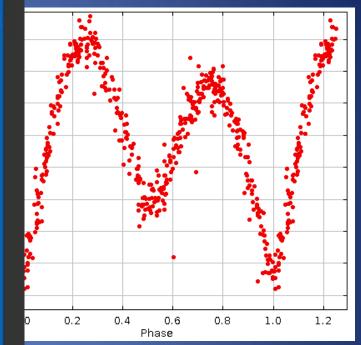


Figure 5. The period distribution of Revelipting Managements.

Table 1. A weight of 21 edgeing biney size of our weaking using of 20% with strong CO.


dan.k	And downed	(and the local data	(Annual Contract)	Partial of	I mail friendling that
TAXABLE PARTY		4 Paintee		-	1.000
And in case of the local diversion of the local diversion of the local diversion of the local diversion of the	100.000.000	Driving and	10.000	-	- And Real Property in
Colorado Calendaria	2010/00/00	+ Deliver	10.30	1.2144	1.000
and the local of	and the second			8.77 mil	1.000
ARRENDARIA -	100.000	00000	-	1.000	1000
CONTRACTOR OF STREET,	100.00	10000	10.00	1.000	1.000
CONCEPTION OF THE OWNER.	10.00.00	10000	22	1.00.00	1000
ALC: NO.	100.00-0	0000143		1.00.00	a street of
ALC: NOT A DESCRIPTION OF	2010010	100.00.00	-	a street	1000
Contraction of the	Course of	10000		1.0110	1.000
THE OWNER OF T	and the second second	000000		0.00075	1. A 1000
in two over 1	100.000.000	004044	10.00	0.0010	0.0000
CONTRACTOR OF THE OWNER.	Condensati	10000		122	1.00ml
DENSING T	10-photo	14-00-08	10.00	1.20214	1.000
100.000.7	100.000	-	19.45	0.000	1.000
A DOLLAR DOLLAR	and the second second				in teaching

The second single-result is and in the biology and a STATE COLOR STATE and a second size of the second size

Erlinste Erligen werden de Propagan ginn maark Die in daard Geweeke Providenties fer die engewerke wiederstep

SETTING SCENE

Specific C. Managerett, B., 1994, Construction 74, 202

inary star

cover parts of the LC just before ingress and just after the egress from the minimum, examine period before

DATA reduction process

CCD frames reduction

Reduction of Raw CCD frames, dark, flat-field frames, aperture photometry... Resulting LC available on the DWARF page

<u>Reference time for the data</u>

crucial to regularly synchronize the computer clock with the ntp servers to provide the system time within 1 second off the UTC...?... Barycentric Dynamical Time (TDB) What about HJD (Heliocentric Julian Date) correction? It is best to relate time to the Solar System Barycenter. Hence we will use Barycentric Julian Dates in Barycentric Dynamical Time (BJD-TDB)

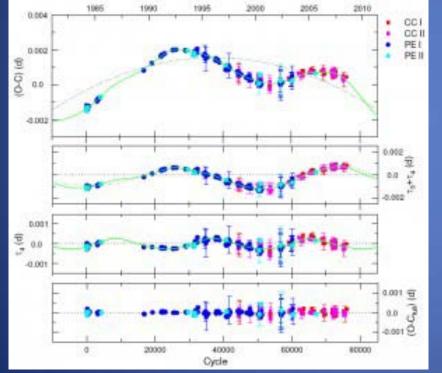
Minima determination and uncertainties

Kwee & van Woerden (1956) method Fitting function F(x) = A + Bx + CT (x - D) (Pribulla et al. 2008) Monte Carlo simulations

The timing analysis and its limitations

(O-C) curve (due only to the inner binary) can be described by a linear (constant period) or quadratic ephemeris (linear period variation) and if a third body is orbiting the inner binary adding the LITE effect, the times of the minima can be computed as follows (Irwin 1959)

$$Min I = JD_0 + P \times E + Q \times E^2 + \frac{a_{12} \sin i}{c} \left[\frac{1 - e^2}{1 + e \cos \nu} \sin(\nu + \omega) + e \sin \omega \right]$$


 α is the semi-major axis of the third (substellar) companion's orbit around the binary's mass center, then $a_{12} = \frac{aM_3}{M_1 + M_2 + M_3}.$

Determination of orbital elements..... Derive the mass function of the third body

$$M_3^3 \sin^3 i \approx \frac{4\pi^2 (M_1 + M_2)^2}{GP_3^2} A^3 c^3$$

Eclipsing binary with confirmed planets

HW Vir (sdB and an M dwarf) P_{orb}= 2.8h

- HW Vir, and the residuals of the eclipse timings measured since the early 1980s with respect to the linear terms of the Ibanoglu et al. (2004) ephemeris:
- (a) the parabolic curve corresponds to a linear period decrease, which might arise from magnetic stellar wind breaking;
- (b) residuals from the quadratic form;
- (c) residuals after including the effect of the 15.8 yr planet;
- (d) residuals with respect to the twoplanet model. From Lee et al. (2009)

Stable configuration? Horner & Hinse 2012

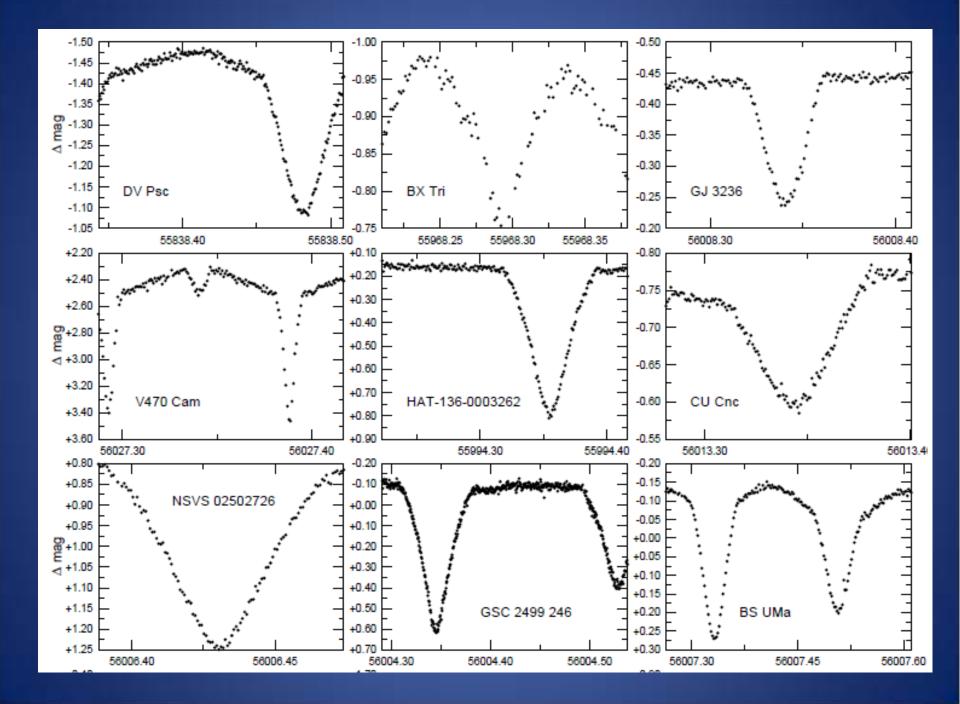
To further characterize the HW Vir system and constrain orbital parameters we recommend further observations within a monitoring program as described in Pribulla et al. (2012).

Observing network and observations

➤ 35-120 cm telescopes with CCD cameras

➤ Targets DEC>-10°

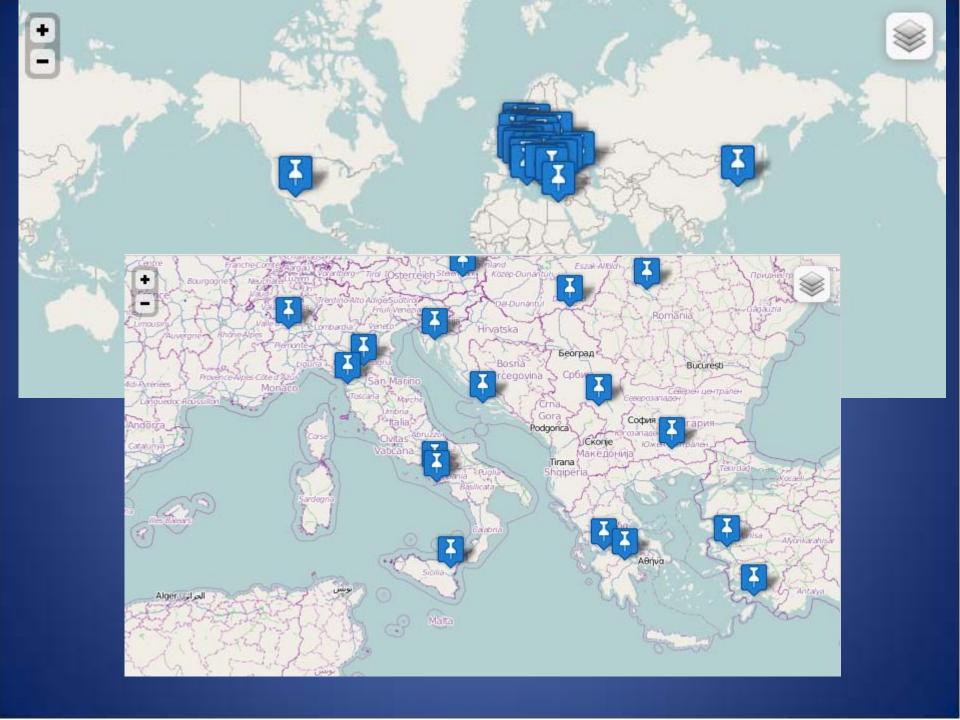
R or I filter for M or K EBs and V for sdB or WD components


Short period cover both shoulders to see the LC asymmetry

For most binaries with M and K dwarf component both minima

WD component only primary

In addition...


Medium to High resolution spectroscopy at the 2m telescope at Rozhen

Observing network and observations

Table 2 Telescope network (status as of April 22, 2012)

Observatory	Long.	Lat.	Telescope	Aperture	Camera	CCD size	FoV	Ref.
	[deg.]	[deg.]		[cm]			[aremin]	
SOAO/Korea	128.4E	36.9N	Cassegrain	60	E2V CCD42-40	2048×2048	18×18	(1)
Terskol/Russia	42.5E	43.3N	Cassegrain	60	Pixel Vision	1024×1024	10×10	
			Schmidt-Cass.	35	SBIG STL-1001	1024×1024	24×24	
			Schmidt-Cass.	29	S3C	1024×1024	28×28	
OMU/Turkey	36.2E	41.4N	Schmidt-Cass.	35	STL-4020M	2048×2048	15×15	
Ankara/Turkey	32.8E	39.8N	Schmidt-Cass.	40	Apogee Alta U-47	1024×1024	11×11	(2)
Kottamia/Egypt	31.8E	29.9N	Cassegrain	188	EEV CCD 42-40	2048×2048	2.7×2.7	(3)
MAO NASU/Ukraine	30.5E	50.4N	Cassegrain	70	SBIG STL-1001	1024×1024	24×24	
Lesniki/Ukraine	30.5E	50.3N	Schmidt-Cass.	35	Rolera MGi	512×512	7×7	
ITAP/Turkey	28.3E	36.7N	Schmidt-Cass.	35	SBIG ST10 XME	2184×1472	14×10	(4)
Ege/Turkey	27.1E	38.4N	Schmidt-Cass.	40	Apogee CCD47-10	2048×2048	20×20	(5)
Rozhen/Bulgaria	24.7E	41.7N	Cassegrain	60	FLI ProLine 09000	3056 × 3056	17×17	6
2			Schmidt	50/70	FLI ProLine 16803	4096×4096	73×73	
			RitChret.	200	Vers Array 1300B	1340×1300	5.7× 5.7	
Feleacu/Romania	23.6E	46.7N	Schmidt-Cass.	40	SBIG STL-6303E	3072×2048	23×16	(7)
Kolonica	22.3E	48.9N	Cassegrain	100	FLI PL1001E	1024×1024	10×10	(8)
Slovakia			Schmidt-Cass.	35	MI G2-1600	1536 × 1024	12×8	~
			Sohmidt Case	50	MI C4 16000	4096 × 4096	31×31	
Patras/Greece	21.7E	38.3N	Schmidt-Cass.	35	SBIG ST10 XME	2184×1472	20×14	
Astron. Station Vidojevica	21.5E	43.IN	Cassegrain	60	Apogee Alta U-42	2048×2048	16×16	(9)
Serbia			Cassegrain	60	Apogee Alta U-47	1024×1024	7.6× 7.6	(10)
Roztoky/Slovakia	21.5E	49.4N	Cassegrain	40	MI G2-1600	1536×1024	12×8	
Stará Lesná	20.3E	49.2N	Newton	50	SBIG ST10 XME	2184×1472	20×14	(11)
Slovakia			Cassegrain	60	MI G4-9000	3056 × 3056	17×17	
Szeged/Hungary	20.2E	46.2N	Newton	40	SBIG ST7	765×510	17×11	
Toruń/Poland	18.6E	53.1N	Cassegrain	60	SBIG STL-1001	1024×1024	12×12	
Bmo/Czech Rep.	16.6E	49.2N	Newton	62	SBIG ST8	1530×1020	17×11	
			Schmidt-Cass.	35	G2-4000	2056 × 2062		
Hvar/Croatia	16.4E	43.2N	Cassegrain	100	Apogee Alta U-47	2048×2048	8×8	(12)
Graz/Austria	15.5E	47.1N	Astro_Topar	30	SBIG STL11000M	4008×2672	16×11	
			Cassegrain	50	SBIG ST-2000XM	1600×1200	9 × 7	
Catania/Italy	15.0E	37.7N	Cassegrain	91	KAF1001E	1024×1024	12.5×12.5	(13)
			RitChret.	80	Apogee U9000	3040×3040	17 (diameter)	(14)
Prague/Czech Rep.	14.4E	50.1N	Schmidt-Cass.	40	SBIG ST10 XME	2184×1472	24×16	(15)
TLS/Germany	11.7E	51.0N	Schmidt	30	Apogee AP-16	4096×4096	132×132	(16)
Jena	11.5E	50.9N	Schmidt	60/90	E2V CCD42-10	2048×2048	53 × 53	(17)
Germany			Cassegrain	25	E2V CCD47-10	1056×1027	21×20	(18)
Kirchheim/Germany	11.0E	50.9N	RitChret.	60	SBIG STL-6303E	3072×2048	71×52	(19)
Herges-Hallenberg/Germany	10.6E	50.7N	Cassegrain	20	MI G2-1600	1536×1024	48×32	(20)
Trebur/Germany	8.4E	49.9N	Cassegrain	120	SBIG STL-6303E	3072×2048	10×7	(21)
LOAO/USA	110.7W	32.4N	Cassegrain	100	ARC 4K CCD	4096×4096	28×28	(22)

List of objects updated

Posted on <u>5. November 2012</u> | <u>Leave a comment</u>

New objects were added into list. The objects we

14. September 2012 | Leave a comment

Two objects were dropped from observational list:

WD + M dwarf			OT Lyr choy	we just some alli	ncoidals	oriations	
	Date	Object	Observa		Filter(e
 SDSS LP133 	2012-10-01	GJ 3236	Patras	Schmidt-Cassegr	ain Ic	View Downlo	bad
• CSS 4	2012-09-30	GJ 3236	Patras	Schmidt-Cassegr	ain Ic	View Downlo	bad
CSS 4	2012-09-30	BX Tri	Patras	Schmidt-Cassegr	ain Ic	View Downlo	bad
■ SW Se	2012-09-29	GJ 3236	Patras	Schmidt-Cassegr	ain Ic	View Downlo	oad
low-mass bi	2012-09-29	BX Tri	Patras	Schmidt-Cassegr	ain Ic	View Downlo	_
	2012-09-29	AP Tau	Patras	Schmidt-Cassegr	ain Ic	View Downlo	_
V641	2012-09-28	GJ 3236	Patras	Schmidt-Cassegr	ain Ic	View Downlo	_
• KIC 5	2012-09-28	BX Tri	Patras	Schmidt-Cassegr	ain Ic	View Downlo	
■ KIC 6.	2012-09-28	CM Dra	Patras	Schmidt-Cassegr	ain Ic	View Downlo	
	2012-09-27	BX Tri	Patras	Schmidt-Cassegr	ain Ic	View Downlo	oad d
	2012-09-27	AP Tau	Patras	Schmidt-Cassegr	ain Ic	View Downlo	oad d
	2012-09-27	YY Gem	Patras	Schmidt-Cassegr	ain Ic	View Downlo	oad d
	2012-09-26	GI 3236	Patras	Schmidt-Cassegr	ain Ic	View Downlo	oad d
	2013-0	8-10 HS 2231+24	441 M	AO NASU Celestron		Clear <u>View I</u>	Download
	2013-0	8-10 FP Sge	Le	esniki Schmidt-C	assegrain	Clear <u>View I</u>	Download
	2013-0	8-10 G179-55	Le	esniki Schmidt-C	assegrain	R <u>View I</u>	Download
	2013-0	8-09 GU Boo	Le	esniki Schmidt-C	assegrain	R <u>View I</u>	Download

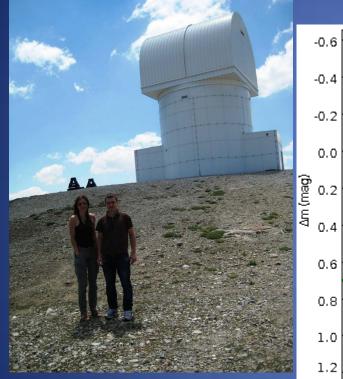
Conclusion

Additional useful science

•the study of spot cycles in the RS CVn-like late-type binaries, detection of flares (see Pribulla et al., 2001)

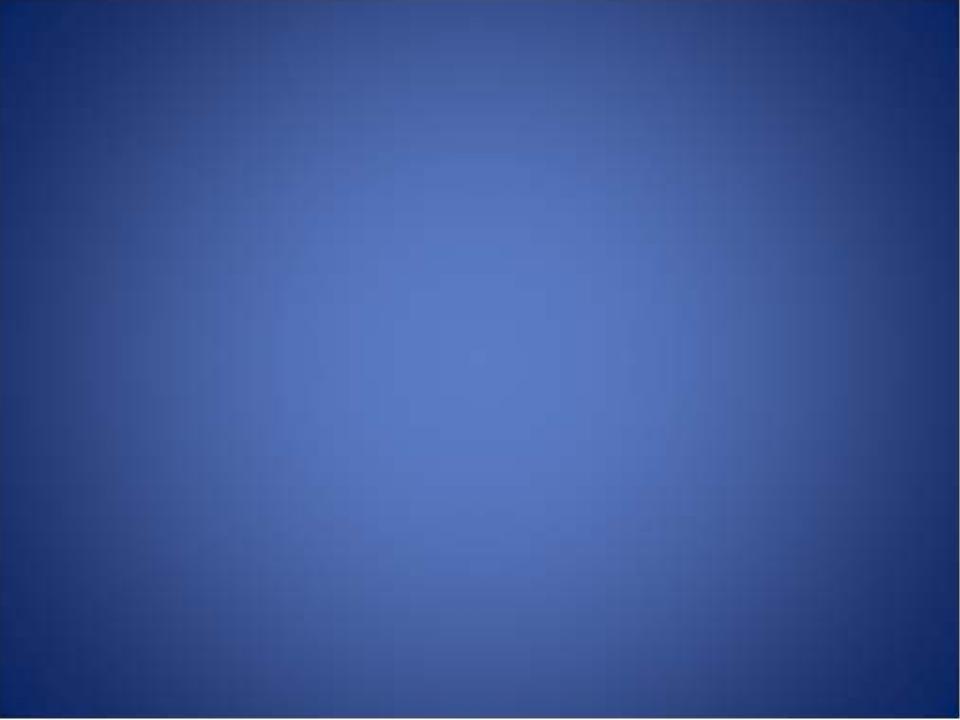
A more accurate characterization of recently discovered detached eclipsing binaries
 •detection of new low-mass EBs which is crucial to better define the empirical lower main sequence

•determination of absolute parameters of the components (in the case that spectroscopic orbits are available)


detection of EBs with pulsating component(s)

detection and characterization of multiple systems with two systems of eclipses
 detection of new variable stars in the CCD fields covered

•Photometric detection of transits of substellar components across the disks of the components of the eclipsing pair (see Doyle et al., 2011)


•detection of invisible massive components causing precession of the EB orbit and changes of the minima depth (see Mayer et al., 2004).

Last but not least...

KIC8108785Ic KIC8242493Ic KIC11246163Ic KIC4563150Ic 0.45 • HS223 0.50 0.55 0.60 ្តូ៍ 0.65 0.70 0.2 0.0 0.75 0.80 0.85 2.45650354 2.45650356 2.45650358 2.45650360 2.456503 ×10⁶ HJD

Aristarchos observations July-August 2013

