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Pulsars
Periods ranging 
from ms to 10 s.

Magnetic fields 
from 108G to 1015G.

They spin-down steadily
because of “dipole 
radiation”.

Magnetosphere:
Vacuum dipole, Force-free, MHD models. 
(Deutch 1955, Goldreich & Julian 1969, Mestel 1971, 
Scharlemann & Wagoner 1973, Contopoulos et al. 1999, 
Spitkovsky 2006).

800 nm, slowed down, pulse and subpulse P=33ms of 
the crab pulsar; LUCKY IMAGING PROJECT

Kaspi (2010)

B2 ⇠ �⌫̇/⌫3

B2 ⇠ PṖ
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Magnetars

Anomalous X-ray Pulsars: slowly rotating 
pulsars, bright in X-rays, strong inferred 
dipole magnetic fields.

Soft Gamma-ray Repeaters: detected during 
bursts of Gamma-rays, too faint to time 
during quiescence. 

Strongly magnetized pulsars
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Timing noise

Pulsars spin-down regularly and can be 
fitted by a timing solution      .      

Comparison of the Times of Arrival (ToA) with 
the timing solution has some residuals. 

The residuals can be due to some long-term 
effect (i.e. magnetic field evolution, crust 
cooling, orbital modulation), but there is an 
underlying irreducible component that 
appears as random irregularities. 

⌫, ⌫̇

Wolszczan & Frail (1992)
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Nature of timing noise

Tuesday, 10 September, 13



Nature of timing noise

• The physical cause is poorly understood (Hobbs et al. 2010)

• Slow glitches (Shabanova 2010).

• Hidden long periodicities because of companions (Rea et al 2008).

• Precession (Jones 2012).

• Moding - Nulling (Kramer et al 2006).

• Starquakes - internal processes (Cordes & Greenstein 1981)
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Nature of timing noise

• The physical cause is poorly understood (Hobbs et al. 2010)

• Slow glitches (Shabanova 2010).

• Hidden long periodicities because of companions (Rea et al 2008).

• Precession (Jones 2012).

• Moding - Nulling (Kramer et al 2006).

• Starquakes - internal processes (Cordes & Greenstein 1981)

• Phenomenological description (Cordes 1980)

• Fitting of higher frequency derivatives

• White noise - Random Walk

Tuesday, 10 September, 13



Random Walks
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Random Walks
Regardless of the origin of the noise it can be approximated 
by a random walk in phase, frequency or torque. The random 
walk strengths have different dependence on the timing 
residuals.
(A more realistic assumption is a random walk in a valley)  
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We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of
the timing noise (�TN) with strong magnetic field dependence (�TN ⇠ B2

o⌦T 3/2) above Bo ⇠ 1012.5G. The
dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size.
We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the
moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may
be due to variation of this moment of inertia, and could be evidence of rapid global magnetospheric variability.

Introduction.— The spin evolution of pulsars and magne-
tars is studied by long term monitoring of pulse arrival times,
allowing the spin period, spin-down rate, orbital motion and
astrometric variations of the neutron star to be inferred. The
variation of these pulse arrival times from the best fit models
of the timing evolution is referred to as timing noise.

Timing noise was first observed in the Crab pulsar [1]
and has been identified as a ubiquitous property of pulsars
[2]. Recently much e↵ort has been made to understand the
stochastic timing noise in millisecond pulsars, as timing ar-
rays of low-noise recycled pulsars will allow the detection
of nanohertz gravitational waves [3]. Millisecond pulsars
typically have relatively low inferred surface magnetic field
(Bo ⇠ 107 � 108G), due to age and accretion history.

Most isolated pulsars have spin-down inferred surface mag-
netic fields in the range Bo ⇠ 1011 � 1013G, while the high-
est known magnetic fields are possessed by magnetars (Bo ⇠
1013 � 1015G). Magnetars include Anomalous X-ray Pulsars
(AXPs) whose X-ray luminosities dwarf their spin down lu-
minosities and most likely originate from internal magnetic
field decay [4]; and Soft Gamma Repeaters (SGRs), hard X-
ray transient sources that can undergo extreme outbursts.

Mode-changing and nulling behaviors in pulsars have been
linked to spin-down torque variations [5, 6], implying that
such behavior is indicative of variations of the open field line
regions of the magnetosphere. Recent simultaneous X-ray
and radio observations of PSR B0943+10 [7] have challenged
existing pulsar emission theories and provided evidence that
such variability is indicative of rapid global variations of the
magnetosphere.

In this Letter we study the timing noise for radio pulsars and
magnetars, inferring a source of timing noise in high B-field
pulsars and AXPs which correlates strongly with magnetic
field. We examine physical models to explain the dependence
of this timing noise on the spin-down inferred magnetic field,
and identify this timing noise as evidence for global magneto-
spheric variability.

Timing Noise Analysis.— Long term pulsar timing irregu-
larities have enjoyed a long history of detailed analysis [see
e.g. 8–12]. Here we adopt the approach of modelling tim-
ing noise as a random walk process [1, 13, 14]. In particular,
we utilize the formalism of Cordes [14] in order to define the
random walk strengths of various processes: S PN = R

D
(��)2

E
,

for a random walk in phase; S FN = R
D
(�⌦)2

E
, for a random

walk in frequency; and S SN = R
D
(�⌦̇)2

E
, for a random walk in

spin-down rate, where R is the occurrence rate of the random
walk steps, and

⌦ · ↵ indicates an ensemble average. The quan-
tities ��, �⌦, and �⌦̇ denote stochastic variations in phase,
frequency, and spin-down rate, respectively.

These strengths can be estimated from timing parameters
of a given pulsar and represent the strength of the assumed
random walk

S PN ' 2C2
0,m�

2
TNT�1, (1)

S FN ' 12C2
1,m�

2
TNT�3, (2)

S SN ' 120C2
2,m�

2
TNT�5, (3)

where, T is the time span over which the observations were
(uniformly) taken, �TN is the rms phase residual of the data for
a given timing solution, and C0,m, C1,m and C2,m are correction
factors [14, 15] to compensate for the power of the random
walk that has been removed by the mth order polynomial fit
that occurs when the residuals are determined.

Previous analyses [8, 10, 12] have shown that simple ran-
dom walk processes cannot explain the totality of timing
noise, with the di↵erent strengths sometimes varying strongly
even for the same pulsar as a function of timespan T . We
argue that if some random walk timing noise component be-
comes dominant as the magnetic field increases 8 orders of
magnitude from ⇠ 107G to ⇠ 1015G this should result in a
lower bound in the distribution of the random walk strength
that scales with the magnetic field.

In Figure 1 we show the random walk strengths for vari-
ous pulsars versus the spin-down inferred surface dipole mag-
netic field strength. The strength of the frequency noise
and spin-down noise has been normalized by ⌦2 and ⌦̇2,
respectively, so that the strengths can be compared across
pulsars with di↵ering timing profiles. Here, we utilize pub-
lished timing data from Jodrell Bank Observatory [8], and the
Parkes 64m radio telescope [16–21]. We also include the X-
ray timing results from the well-timed AXPs: 1E 1841�045
[22], RXS J170849.0�400910 [22], 4U 0142+61[23], and 1E
2259.1+586 [24]. We do not include the timing for AXP 1E
1547.0�5408 [25], as the timing observations have only been
taken post-outburst, nor AXP 1E 1048.1�5937 [26], as the
timing solution presented in the literature was fit using fifth or-
der splines rather than a simple polynomial fit, due to instabil-
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FIG. 1. E↵ective random walk strength for various pulsars as a func-
tion of spin-down inferred magnetic field strength (Bo). The fre-
quency noise (FN) and spin-down noise (SN) strengths have been
normalized by ⌦2 and ⌦̇2, respectively, to be comparable between
systems. The blue points denote normal pulsars, with radio tim-
ing information taken from Hobbs et al. [8], Yu et al. [16], and the
Parkes multi-beam survey [17–21]. The red circles label AXP timing
epochs, with X-ray timing information taken from Dib et al. [22, 23],
and Gavriil and Kaspi [24]. The e↵ective strength of the frequency
noise random walk shows a strong trend with magnetic field strength.
In particular the lower bound of the frequency noise strength distri-
bution appears to rise sharply for Bo >⇠ 1012.5 G as (S FN/⌦2)min ⇠ B4

o,
such that (�TN)min ⇠ B2

o⌦.

ity of the spin-down of 1E 1048.1�5937. We also ignore the
timing properties of SGRs (unlike Shannon and Cordes [9]),
which are only timed in a phase connected fashion for short
periods following outbursts where timing noise would likely
be elevated by the burst activity. In quiescence, where the tim-
ing noise would not be dominated by such events, SGRs are
faint and have not been observed with su�cient regularity for
a phase connected solution to emerge.

While there is no obvious correlation between magnetic
field strength and the random walk strengths for phase noise
(S PN) or spin-down noise (S SN/⌦̇2) in Figure 1, there appears
to be a weak correlation of the FN strength (S FN/⌦2) with Bo

across the range of magnetic field1. We note, however, that
above a field strength of Bo >⇠ 1012.5 G, the lower bound of
the FN strength distribution rises sharply with (S FN/⌦2)min ⇠
⌦̇2/⌦6 ⇠ B4

o. We focus on FN as the change in S FN along this
lower envelope is larger than the intrinsic scatter of the distri-
bution for FN (particularly due to the inclusion of AXP timing
data). Thus, we infer that timing noise has a component which
depends strongly on the magnetic field and becomes dominant
as the magnetic field increases such that (�TN)min ⇠ B2

o⌦T 3/2

above Bo >⇠ 1012.5 G. These scalings are within the 2� con-
fidence intervals for the timing noise scalings inferred by [9]
for magnetars, except for the dependence on T , which may be
di↵erent due to their inclusion of SGRs.

Caution must be used in interpreting such scalings as B2
o ⇠

⌦̇/⌦3, and is only inferred from the spin observables. With
this in mind, we consider two di↵erent physical models of
timing noise due to magnetospheric variability, torque varia-
tion, and moment of inertia variation.

Magnetospheric Torque Variation.— Spin-down torque
variation and mode-changing are associated with perturba-
tions of the open field lines [5, 6]. The e↵ect of these torque
variations on the timing noise has been explored in detail by
Cheng [27], who showed that the frequency noise strength for
torque variability should scale as S FN/⌦2 ⇠ ⌦̇2/⌦3 ⇠ B4

o⌦
3,

which is inconsistent with the scaling discussed above. Thus,
while this source of noise may dominate in some pulsars, par-
ticularly those where significant pulse-shape changes are ob-
served, it is not the source of the high magnetic field timing
noise floor evident in Figure 1.

Magnetospheric Moment of Inertia.— The angular momen-
tum content of a small volume of the magnetosphere in the
inertial frame [28] is dL = (r⇥S/c2)dV where S is the Poynt-
ing vector and dV is the volume element. In a co-rotating
ideal-MHD magnetosphere with angular velocity ⌦, we can
evaluate this as

dL =

"
r ⇥ (⌦ ⇥ r)

B2

4⇡c2 � (r ⇥ B)
B · (⌦ ⇥ r)

4⇡c2

#
dV. (4)

In cylindrical coordinates, ($, z, �), the component of the
angular momentum along the rotation axis is dLz =

1
4⇡c2$

2⌦(B2
$ + B2

z )dV. Thus the angular momentum of the
magnetosphere in the direction of the rotation is given by the
integrated angular momentum of the magnetic energy density
with the component of the magnetic field in the azimuthal di-
rection removed, as the component of the magnetic field in the
direction of motion should not contribute to the Poynting flux
in that direction.

1 The weak correlation of this timing noise with magnetic field for lower
field strengths has been noted previously, see e.g. Figure 9 of Hobbs et al.
[8], where timing noise is measured by the parameter �z(10yr). The onset
of a sharp increase in �z(10yr) above Bo ⇠ 1012.5G can also be seen in this
figure, but is not mentioned by the authors. In Figure 1 the trend is more
clear due to the inclusion of the AXPs.
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dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size.
We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the
moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may
be due to variation of this moment of inertia, and could be evidence of rapid global magnetospheric variability.

Introduction.— The spin evolution of pulsars and magne-
tars is studied by long term monitoring of pulse arrival times,
allowing the spin period, spin-down rate, orbital motion and
astrometric variations of the neutron star to be inferred. The
variation of these pulse arrival times from the best fit models
of the timing evolution is referred to as timing noise.

Timing noise was first observed in the Crab pulsar [1]
and has been identified as a ubiquitous property of pulsars
[2]. Recently much e↵ort has been made to understand the
stochastic timing noise in millisecond pulsars, as timing ar-
rays of low-noise recycled pulsars will allow the detection
of nanohertz gravitational waves [3]. Millisecond pulsars
typically have relatively low inferred surface magnetic field
(Bo ⇠ 107 � 108G), due to age and accretion history.

Most isolated pulsars have spin-down inferred surface mag-
netic fields in the range Bo ⇠ 1011 � 1013G, while the high-
est known magnetic fields are possessed by magnetars (Bo ⇠
1013 � 1015G). Magnetars include Anomalous X-ray Pulsars
(AXPs) whose X-ray luminosities dwarf their spin down lu-
minosities and most likely originate from internal magnetic
field decay [4]; and Soft Gamma Repeaters (SGRs), hard X-
ray transient sources that can undergo extreme outbursts.

Mode-changing and nulling behaviors in pulsars have been
linked to spin-down torque variations [5, 6], implying that
such behavior is indicative of variations of the open field line
regions of the magnetosphere. Recent simultaneous X-ray
and radio observations of PSR B0943+10 [7] have challenged
existing pulsar emission theories and provided evidence that
such variability is indicative of rapid global variations of the
magnetosphere.

In this Letter we study the timing noise for radio pulsars and
magnetars, inferring a source of timing noise in high B-field
pulsars and AXPs which correlates strongly with magnetic
field. We examine physical models to explain the dependence
of this timing noise on the spin-down inferred magnetic field,
and identify this timing noise as evidence for global magneto-
spheric variability.

Timing Noise Analysis.— Long term pulsar timing irregu-
larities have enjoyed a long history of detailed analysis [see
e.g. 8–12]. Here we adopt the approach of modelling tim-
ing noise as a random walk process [1, 13, 14]. In particular,
we utilize the formalism of Cordes [14] in order to define the
random walk strengths of various processes: S PN = R

D
(��)2

E
,

for a random walk in phase; S FN = R
D
(�⌦)2

E
, for a random

walk in frequency; and S SN = R
D
(�⌦̇)2

E
, for a random walk in

spin-down rate, where R is the occurrence rate of the random
walk steps, and

⌦ · ↵ indicates an ensemble average. The quan-
tities ��, �⌦, and �⌦̇ denote stochastic variations in phase,
frequency, and spin-down rate, respectively.

These strengths can be estimated from timing parameters
of a given pulsar and represent the strength of the assumed
random walk

S PN ' 2C2
0,m�

2
TNT�1, (1)

S FN ' 12C2
1,m�

2
TNT�3, (2)

S SN ' 120C2
2,m�

2
TNT�5, (3)

where, T is the time span over which the observations were
(uniformly) taken, �TN is the rms phase residual of the data for
a given timing solution, and C0,m, C1,m and C2,m are correction
factors [14, 15] to compensate for the power of the random
walk that has been removed by the mth order polynomial fit
that occurs when the residuals are determined.

Previous analyses [8, 10, 12] have shown that simple ran-
dom walk processes cannot explain the totality of timing
noise, with the di↵erent strengths sometimes varying strongly
even for the same pulsar as a function of timespan T . We
argue that if some random walk timing noise component be-
comes dominant as the magnetic field increases 8 orders of
magnitude from ⇠ 107G to ⇠ 1015G this should result in a
lower bound in the distribution of the random walk strength
that scales with the magnetic field.

In Figure 1 we show the random walk strengths for vari-
ous pulsars versus the spin-down inferred surface dipole mag-
netic field strength. The strength of the frequency noise
and spin-down noise has been normalized by ⌦2 and ⌦̇2,
respectively, so that the strengths can be compared across
pulsars with di↵ering timing profiles. Here, we utilize pub-
lished timing data from Jodrell Bank Observatory [8], and the
Parkes 64m radio telescope [16–21]. We also include the X-
ray timing results from the well-timed AXPs: 1E 1841�045
[22], RXS J170849.0�400910 [22], 4U 0142+61[23], and 1E
2259.1+586 [24]. We do not include the timing for AXP 1E
1547.0�5408 [25], as the timing observations have only been
taken post-outburst, nor AXP 1E 1048.1�5937 [26], as the
timing solution presented in the literature was fit using fifth or-
der splines rather than a simple polynomial fit, due to instabil-
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FIG. 1. E↵ective random walk strength for various pulsars as a func-
tion of spin-down inferred magnetic field strength (Bo). The fre-
quency noise (FN) and spin-down noise (SN) strengths have been
normalized by ⌦2 and ⌦̇2, respectively, to be comparable between
systems. The blue points denote normal pulsars, with radio tim-
ing information taken from Hobbs et al. [8], Yu et al. [16], and the
Parkes multi-beam survey [17–21]. The red circles label AXP timing
epochs, with X-ray timing information taken from Dib et al. [22, 23],
and Gavriil and Kaspi [24]. The e↵ective strength of the frequency
noise random walk shows a strong trend with magnetic field strength.
In particular the lower bound of the frequency noise strength distri-
bution appears to rise sharply for Bo >⇠ 1012.5 G as (S FN/⌦2)min ⇠ B4

o,
such that (�TN)min ⇠ B2

o⌦.

ity of the spin-down of 1E 1048.1�5937. We also ignore the
timing properties of SGRs (unlike Shannon and Cordes [9]),
which are only timed in a phase connected fashion for short
periods following outbursts where timing noise would likely
be elevated by the burst activity. In quiescence, where the tim-
ing noise would not be dominated by such events, SGRs are
faint and have not been observed with su�cient regularity for
a phase connected solution to emerge.

While there is no obvious correlation between magnetic
field strength and the random walk strengths for phase noise
(S PN) or spin-down noise (S SN/⌦̇2) in Figure 1, there appears
to be a weak correlation of the FN strength (S FN/⌦2) with Bo

across the range of magnetic field1. We note, however, that
above a field strength of Bo >⇠ 1012.5 G, the lower bound of
the FN strength distribution rises sharply with (S FN/⌦2)min ⇠
⌦̇2/⌦6 ⇠ B4

o. We focus on FN as the change in S FN along this
lower envelope is larger than the intrinsic scatter of the distri-
bution for FN (particularly due to the inclusion of AXP timing
data). Thus, we infer that timing noise has a component which
depends strongly on the magnetic field and becomes dominant
as the magnetic field increases such that (�TN)min ⇠ B2

o⌦T 3/2

above Bo >⇠ 1012.5 G. These scalings are within the 2� con-
fidence intervals for the timing noise scalings inferred by [9]
for magnetars, except for the dependence on T , which may be
di↵erent due to their inclusion of SGRs.

Caution must be used in interpreting such scalings as B2
o ⇠

⌦̇/⌦3, and is only inferred from the spin observables. With
this in mind, we consider two di↵erent physical models of
timing noise due to magnetospheric variability, torque varia-
tion, and moment of inertia variation.

Magnetospheric Torque Variation.— Spin-down torque
variation and mode-changing are associated with perturba-
tions of the open field lines [5, 6]. The e↵ect of these torque
variations on the timing noise has been explored in detail by
Cheng [27], who showed that the frequency noise strength for
torque variability should scale as S FN/⌦2 ⇠ ⌦̇2/⌦3 ⇠ B4

o⌦
3,

which is inconsistent with the scaling discussed above. Thus,
while this source of noise may dominate in some pulsars, par-
ticularly those where significant pulse-shape changes are ob-
served, it is not the source of the high magnetic field timing
noise floor evident in Figure 1.

Magnetospheric Moment of Inertia.— The angular momen-
tum content of a small volume of the magnetosphere in the
inertial frame [28] is dL = (r⇥S/c2)dV where S is the Poynt-
ing vector and dV is the volume element. In a co-rotating
ideal-MHD magnetosphere with angular velocity ⌦, we can
evaluate this as

dL =

"
r ⇥ (⌦ ⇥ r)

B2

4⇡c2 � (r ⇥ B)
B · (⌦ ⇥ r)

4⇡c2

#
dV. (4)

In cylindrical coordinates, ($, z, �), the component of the
angular momentum along the rotation axis is dLz =

1
4⇡c2$

2⌦(B2
$ + B2

z )dV. Thus the angular momentum of the
magnetosphere in the direction of the rotation is given by the
integrated angular momentum of the magnetic energy density
with the component of the magnetic field in the azimuthal di-
rection removed, as the component of the magnetic field in the
direction of motion should not contribute to the Poynting flux
in that direction.

1 The weak correlation of this timing noise with magnetic field for lower
field strengths has been noted previously, see e.g. Figure 9 of Hobbs et al.
[8], where timing noise is measured by the parameter �z(10yr). The onset
of a sharp increase in �z(10yr) above Bo ⇠ 1012.5G can also be seen in this
figure, but is not mentioned by the authors. In Figure 1 the trend is more
clear due to the inclusion of the AXPs.
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Random Walks
Regardless of the origin of the noise it can be approximated 
by a random walk in phase, frequency or torque. The random 
walk strengths have different dependence on the timing 
residuals.
(A more realistic assumption is a random walk in a valley)  
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We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of
the timing noise (�TN) with strong magnetic field dependence (�TN ⇠ B2

o⌦T 3/2) above Bo ⇠ 1012.5G. The
dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size.
We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the
moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may
be due to variation of this moment of inertia, and could be evidence of rapid global magnetospheric variability.

Introduction.— The spin evolution of pulsars and magne-
tars is studied by long term monitoring of pulse arrival times,
allowing the spin period, spin-down rate, orbital motion and
astrometric variations of the neutron star to be inferred. The
variation of these pulse arrival times from the best fit models
of the timing evolution is referred to as timing noise.

Timing noise was first observed in the Crab pulsar [1]
and has been identified as a ubiquitous property of pulsars
[2]. Recently much e↵ort has been made to understand the
stochastic timing noise in millisecond pulsars, as timing ar-
rays of low-noise recycled pulsars will allow the detection
of nanohertz gravitational waves [3]. Millisecond pulsars
typically have relatively low inferred surface magnetic field
(Bo ⇠ 107 � 108G), due to age and accretion history.

Most isolated pulsars have spin-down inferred surface mag-
netic fields in the range Bo ⇠ 1011 � 1013G, while the high-
est known magnetic fields are possessed by magnetars (Bo ⇠
1013 � 1015G). Magnetars include Anomalous X-ray Pulsars
(AXPs) whose X-ray luminosities dwarf their spin down lu-
minosities and most likely originate from internal magnetic
field decay [4]; and Soft Gamma Repeaters (SGRs), hard X-
ray transient sources that can undergo extreme outbursts.

Mode-changing and nulling behaviors in pulsars have been
linked to spin-down torque variations [5, 6], implying that
such behavior is indicative of variations of the open field line
regions of the magnetosphere. Recent simultaneous X-ray
and radio observations of PSR B0943+10 [7] have challenged
existing pulsar emission theories and provided evidence that
such variability is indicative of rapid global variations of the
magnetosphere.

In this Letter we study the timing noise for radio pulsars and
magnetars, inferring a source of timing noise in high B-field
pulsars and AXPs which correlates strongly with magnetic
field. We examine physical models to explain the dependence
of this timing noise on the spin-down inferred magnetic field,
and identify this timing noise as evidence for global magneto-
spheric variability.

Timing Noise Analysis.— Long term pulsar timing irregu-
larities have enjoyed a long history of detailed analysis [see
e.g. 8–12]. Here we adopt the approach of modelling tim-
ing noise as a random walk process [1, 13, 14]. In particular,
we utilize the formalism of Cordes [14] in order to define the
random walk strengths of various processes: S PN = R

D
(��)2

E
,

for a random walk in phase; S FN = R
D
(�⌦)2

E
, for a random

walk in frequency; and S SN = R
D
(�⌦̇)2

E
, for a random walk in

spin-down rate, where R is the occurrence rate of the random
walk steps, and

⌦ · ↵ indicates an ensemble average. The quan-
tities ��, �⌦, and �⌦̇ denote stochastic variations in phase,
frequency, and spin-down rate, respectively.

These strengths can be estimated from timing parameters
of a given pulsar and represent the strength of the assumed
random walk

S PN ' 2C2
0,m�

2
TNT�1, (1)

S FN ' 12C2
1,m�

2
TNT�3, (2)

S SN ' 120C2
2,m�

2
TNT�5, (3)

where, T is the time span over which the observations were
(uniformly) taken, �TN is the rms phase residual of the data for
a given timing solution, and C0,m, C1,m and C2,m are correction
factors [14, 15] to compensate for the power of the random
walk that has been removed by the mth order polynomial fit
that occurs when the residuals are determined.

Previous analyses [8, 10, 12] have shown that simple ran-
dom walk processes cannot explain the totality of timing
noise, with the di↵erent strengths sometimes varying strongly
even for the same pulsar as a function of timespan T . We
argue that if some random walk timing noise component be-
comes dominant as the magnetic field increases 8 orders of
magnitude from ⇠ 107G to ⇠ 1015G this should result in a
lower bound in the distribution of the random walk strength
that scales with the magnetic field.

In Figure 1 we show the random walk strengths for vari-
ous pulsars versus the spin-down inferred surface dipole mag-
netic field strength. The strength of the frequency noise
and spin-down noise has been normalized by ⌦2 and ⌦̇2,
respectively, so that the strengths can be compared across
pulsars with di↵ering timing profiles. Here, we utilize pub-
lished timing data from Jodrell Bank Observatory [8], and the
Parkes 64m radio telescope [16–21]. We also include the X-
ray timing results from the well-timed AXPs: 1E 1841�045
[22], RXS J170849.0�400910 [22], 4U 0142+61[23], and 1E
2259.1+586 [24]. We do not include the timing for AXP 1E
1547.0�5408 [25], as the timing observations have only been
taken post-outburst, nor AXP 1E 1048.1�5937 [26], as the
timing solution presented in the literature was fit using fifth or-
der splines rather than a simple polynomial fit, due to instabil-
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Plotting random walk strengths we find 
a trend with SFN/Ω2~B4,for B>1012.5G. 
(1183 Pulsars, 8 AXPs: Hobbs et al. 
2010, Yu et al. 2013, Parkes I, II, III, IV, VI; 
AXPs: Gavrill & Kaspi 2002, Dib et al. 
2007, 2008, did not include SGRs 
because they are only timed during 
outbursts).
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FIG. 1. E↵ective random walk strength for various pulsars as a func-
tion of spin-down inferred magnetic field strength (Bo). The fre-
quency noise (FN) and spin-down noise (SN) strengths have been
normalized by ⌦2 and ⌦̇2, respectively, to be comparable between
systems. The blue points denote normal pulsars, with radio tim-
ing information taken from Hobbs et al. [8], Yu et al. [16], and the
Parkes multi-beam survey [17–21]. The red circles label AXP timing
epochs, with X-ray timing information taken from Dib et al. [22, 23],
and Gavriil and Kaspi [24]. The e↵ective strength of the frequency
noise random walk shows a strong trend with magnetic field strength.
In particular the lower bound of the frequency noise strength distri-
bution appears to rise sharply for Bo >⇠ 1012.5 G as (S FN/⌦2)min ⇠ B4

o,
such that (�TN)min ⇠ B2

o⌦.

ity of the spin-down of 1E 1048.1�5937. We also ignore the
timing properties of SGRs (unlike Shannon and Cordes [9]),
which are only timed in a phase connected fashion for short
periods following outbursts where timing noise would likely
be elevated by the burst activity. In quiescence, where the tim-
ing noise would not be dominated by such events, SGRs are
faint and have not been observed with su�cient regularity for
a phase connected solution to emerge.

While there is no obvious correlation between magnetic
field strength and the random walk strengths for phase noise
(S PN) or spin-down noise (S SN/⌦̇2) in Figure 1, there appears
to be a weak correlation of the FN strength (S FN/⌦2) with Bo

across the range of magnetic field1. We note, however, that
above a field strength of Bo >⇠ 1012.5 G, the lower bound of
the FN strength distribution rises sharply with (S FN/⌦2)min ⇠
⌦̇2/⌦6 ⇠ B4

o. We focus on FN as the change in S FN along this
lower envelope is larger than the intrinsic scatter of the distri-
bution for FN (particularly due to the inclusion of AXP timing
data). Thus, we infer that timing noise has a component which
depends strongly on the magnetic field and becomes dominant
as the magnetic field increases such that (�TN)min ⇠ B2

o⌦T 3/2

above Bo >⇠ 1012.5 G. These scalings are within the 2� con-
fidence intervals for the timing noise scalings inferred by [9]
for magnetars, except for the dependence on T , which may be
di↵erent due to their inclusion of SGRs.

Caution must be used in interpreting such scalings as B2
o ⇠

⌦̇/⌦3, and is only inferred from the spin observables. With
this in mind, we consider two di↵erent physical models of
timing noise due to magnetospheric variability, torque varia-
tion, and moment of inertia variation.

Magnetospheric Torque Variation.— Spin-down torque
variation and mode-changing are associated with perturba-
tions of the open field lines [5, 6]. The e↵ect of these torque
variations on the timing noise has been explored in detail by
Cheng [27], who showed that the frequency noise strength for
torque variability should scale as S FN/⌦2 ⇠ ⌦̇2/⌦3 ⇠ B4

o⌦
3,

which is inconsistent with the scaling discussed above. Thus,
while this source of noise may dominate in some pulsars, par-
ticularly those where significant pulse-shape changes are ob-
served, it is not the source of the high magnetic field timing
noise floor evident in Figure 1.

Magnetospheric Moment of Inertia.— The angular momen-
tum content of a small volume of the magnetosphere in the
inertial frame [28] is dL = (r⇥S/c2)dV where S is the Poynt-
ing vector and dV is the volume element. In a co-rotating
ideal-MHD magnetosphere with angular velocity ⌦, we can
evaluate this as

dL =

"
r ⇥ (⌦ ⇥ r)

B2

4⇡c2 � (r ⇥ B)
B · (⌦ ⇥ r)

4⇡c2

#
dV. (4)

In cylindrical coordinates, ($, z, �), the component of the
angular momentum along the rotation axis is dLz =

1
4⇡c2$

2⌦(B2
$ + B2

z )dV. Thus the angular momentum of the
magnetosphere in the direction of the rotation is given by the
integrated angular momentum of the magnetic energy density
with the component of the magnetic field in the azimuthal di-
rection removed, as the component of the magnetic field in the
direction of motion should not contribute to the Poynting flux
in that direction.

1 The weak correlation of this timing noise with magnetic field for lower
field strengths has been noted previously, see e.g. Figure 9 of Hobbs et al.
[8], where timing noise is measured by the parameter �z(10yr). The onset
of a sharp increase in �z(10yr) above Bo ⇠ 1012.5G can also be seen in this
figure, but is not mentioned by the authors. In Figure 1 the trend is more
clear due to the inclusion of the AXPs.
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Random Walks
Regardless of the origin of the noise it can be approximated 
by a random walk in phase, frequency or torque. The random 
walk strengths have different dependence on the timing 
residuals.
(A more realistic assumption is a random walk in a valley)  
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We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of
the timing noise (�TN) with strong magnetic field dependence (�TN ⇠ B2

o⌦T 3/2) above Bo ⇠ 1012.5G. The
dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size.
We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the
moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may
be due to variation of this moment of inertia, and could be evidence of rapid global magnetospheric variability.

Introduction.— The spin evolution of pulsars and magne-
tars is studied by long term monitoring of pulse arrival times,
allowing the spin period, spin-down rate, orbital motion and
astrometric variations of the neutron star to be inferred. The
variation of these pulse arrival times from the best fit models
of the timing evolution is referred to as timing noise.

Timing noise was first observed in the Crab pulsar [1]
and has been identified as a ubiquitous property of pulsars
[2]. Recently much e↵ort has been made to understand the
stochastic timing noise in millisecond pulsars, as timing ar-
rays of low-noise recycled pulsars will allow the detection
of nanohertz gravitational waves [3]. Millisecond pulsars
typically have relatively low inferred surface magnetic field
(Bo ⇠ 107 � 108G), due to age and accretion history.

Most isolated pulsars have spin-down inferred surface mag-
netic fields in the range Bo ⇠ 1011 � 1013G, while the high-
est known magnetic fields are possessed by magnetars (Bo ⇠
1013 � 1015G). Magnetars include Anomalous X-ray Pulsars
(AXPs) whose X-ray luminosities dwarf their spin down lu-
minosities and most likely originate from internal magnetic
field decay [4]; and Soft Gamma Repeaters (SGRs), hard X-
ray transient sources that can undergo extreme outbursts.

Mode-changing and nulling behaviors in pulsars have been
linked to spin-down torque variations [5, 6], implying that
such behavior is indicative of variations of the open field line
regions of the magnetosphere. Recent simultaneous X-ray
and radio observations of PSR B0943+10 [7] have challenged
existing pulsar emission theories and provided evidence that
such variability is indicative of rapid global variations of the
magnetosphere.

In this Letter we study the timing noise for radio pulsars and
magnetars, inferring a source of timing noise in high B-field
pulsars and AXPs which correlates strongly with magnetic
field. We examine physical models to explain the dependence
of this timing noise on the spin-down inferred magnetic field,
and identify this timing noise as evidence for global magneto-
spheric variability.

Timing Noise Analysis.— Long term pulsar timing irregu-
larities have enjoyed a long history of detailed analysis [see
e.g. 8–12]. Here we adopt the approach of modelling tim-
ing noise as a random walk process [1, 13, 14]. In particular,
we utilize the formalism of Cordes [14] in order to define the
random walk strengths of various processes: S PN = R

D
(��)2

E
,

for a random walk in phase; S FN = R
D
(�⌦)2

E
, for a random

walk in frequency; and S SN = R
D
(�⌦̇)2

E
, for a random walk in

spin-down rate, where R is the occurrence rate of the random
walk steps, and

⌦ · ↵ indicates an ensemble average. The quan-
tities ��, �⌦, and �⌦̇ denote stochastic variations in phase,
frequency, and spin-down rate, respectively.

These strengths can be estimated from timing parameters
of a given pulsar and represent the strength of the assumed
random walk

S PN ' 2C2
0,m�

2
TNT�1, (1)

S FN ' 12C2
1,m�

2
TNT�3, (2)

S SN ' 120C2
2,m�

2
TNT�5, (3)

where, T is the time span over which the observations were
(uniformly) taken, �TN is the rms phase residual of the data for
a given timing solution, and C0,m, C1,m and C2,m are correction
factors [14, 15] to compensate for the power of the random
walk that has been removed by the mth order polynomial fit
that occurs when the residuals are determined.

Previous analyses [8, 10, 12] have shown that simple ran-
dom walk processes cannot explain the totality of timing
noise, with the di↵erent strengths sometimes varying strongly
even for the same pulsar as a function of timespan T . We
argue that if some random walk timing noise component be-
comes dominant as the magnetic field increases 8 orders of
magnitude from ⇠ 107G to ⇠ 1015G this should result in a
lower bound in the distribution of the random walk strength
that scales with the magnetic field.

In Figure 1 we show the random walk strengths for vari-
ous pulsars versus the spin-down inferred surface dipole mag-
netic field strength. The strength of the frequency noise
and spin-down noise has been normalized by ⌦2 and ⌦̇2,
respectively, so that the strengths can be compared across
pulsars with di↵ering timing profiles. Here, we utilize pub-
lished timing data from Jodrell Bank Observatory [8], and the
Parkes 64m radio telescope [16–21]. We also include the X-
ray timing results from the well-timed AXPs: 1E 1841�045
[22], RXS J170849.0�400910 [22], 4U 0142+61[23], and 1E
2259.1+586 [24]. We do not include the timing for AXP 1E
1547.0�5408 [25], as the timing observations have only been
taken post-outburst, nor AXP 1E 1048.1�5937 [26], as the
timing solution presented in the literature was fit using fifth or-
der splines rather than a simple polynomial fit, due to instabil-
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Plotting random walk strengths we find 
a trend with SFN/Ω2~B4,for B>1012.5G. 
(1183 Pulsars, 8 AXPs: Hobbs et al. 
2010, Yu et al. 2013, Parkes I, II, III, IV, VI; 
AXPs: Gavrill & Kaspi 2002, Dib et al. 
2007, 2008, did not include SGRs 
because they are only timed during 
outbursts).
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FIG. 1. E↵ective random walk strength for various pulsars as a func-
tion of spin-down inferred magnetic field strength (Bo). The fre-
quency noise (FN) and spin-down noise (SN) strengths have been
normalized by ⌦2 and ⌦̇2, respectively, to be comparable between
systems. The blue points denote normal pulsars, with radio tim-
ing information taken from Hobbs et al. [8], Yu et al. [16], and the
Parkes multi-beam survey [17–21]. The red circles label AXP timing
epochs, with X-ray timing information taken from Dib et al. [22, 23],
and Gavriil and Kaspi [24]. The e↵ective strength of the frequency
noise random walk shows a strong trend with magnetic field strength.
In particular the lower bound of the frequency noise strength distri-
bution appears to rise sharply for Bo >⇠ 1012.5 G as (S FN/⌦2)min ⇠ B4

o,
such that (�TN)min ⇠ B2

o⌦.

ity of the spin-down of 1E 1048.1�5937. We also ignore the
timing properties of SGRs (unlike Shannon and Cordes [9]),
which are only timed in a phase connected fashion for short
periods following outbursts where timing noise would likely
be elevated by the burst activity. In quiescence, where the tim-
ing noise would not be dominated by such events, SGRs are
faint and have not been observed with su�cient regularity for
a phase connected solution to emerge.

While there is no obvious correlation between magnetic
field strength and the random walk strengths for phase noise
(S PN) or spin-down noise (S SN/⌦̇2) in Figure 1, there appears
to be a weak correlation of the FN strength (S FN/⌦2) with Bo

across the range of magnetic field1. We note, however, that
above a field strength of Bo >⇠ 1012.5 G, the lower bound of
the FN strength distribution rises sharply with (S FN/⌦2)min ⇠
⌦̇2/⌦6 ⇠ B4

o. We focus on FN as the change in S FN along this
lower envelope is larger than the intrinsic scatter of the distri-
bution for FN (particularly due to the inclusion of AXP timing
data). Thus, we infer that timing noise has a component which
depends strongly on the magnetic field and becomes dominant
as the magnetic field increases such that (�TN)min ⇠ B2

o⌦T 3/2

above Bo >⇠ 1012.5 G. These scalings are within the 2� con-
fidence intervals for the timing noise scalings inferred by [9]
for magnetars, except for the dependence on T , which may be
di↵erent due to their inclusion of SGRs.

Caution must be used in interpreting such scalings as B2
o ⇠

⌦̇/⌦3, and is only inferred from the spin observables. With
this in mind, we consider two di↵erent physical models of
timing noise due to magnetospheric variability, torque varia-
tion, and moment of inertia variation.

Magnetospheric Torque Variation.— Spin-down torque
variation and mode-changing are associated with perturba-
tions of the open field lines [5, 6]. The e↵ect of these torque
variations on the timing noise has been explored in detail by
Cheng [27], who showed that the frequency noise strength for
torque variability should scale as S FN/⌦2 ⇠ ⌦̇2/⌦3 ⇠ B4

o⌦
3,

which is inconsistent with the scaling discussed above. Thus,
while this source of noise may dominate in some pulsars, par-
ticularly those where significant pulse-shape changes are ob-
served, it is not the source of the high magnetic field timing
noise floor evident in Figure 1.

Magnetospheric Moment of Inertia.— The angular momen-
tum content of a small volume of the magnetosphere in the
inertial frame [28] is dL = (r⇥S/c2)dV where S is the Poynt-
ing vector and dV is the volume element. In a co-rotating
ideal-MHD magnetosphere with angular velocity ⌦, we can
evaluate this as

dL =

"
r ⇥ (⌦ ⇥ r)

B2

4⇡c2 � (r ⇥ B)
B · (⌦ ⇥ r)

4⇡c2

#
dV. (4)

In cylindrical coordinates, ($, z, �), the component of the
angular momentum along the rotation axis is dLz =

1
4⇡c2$

2⌦(B2
$ + B2

z )dV. Thus the angular momentum of the
magnetosphere in the direction of the rotation is given by the
integrated angular momentum of the magnetic energy density
with the component of the magnetic field in the azimuthal di-
rection removed, as the component of the magnetic field in the
direction of motion should not contribute to the Poynting flux
in that direction.

1 The weak correlation of this timing noise with magnetic field for lower
field strengths has been noted previously, see e.g. Figure 9 of Hobbs et al.
[8], where timing noise is measured by the parameter �z(10yr). The onset
of a sharp increase in �z(10yr) above Bo ⇠ 1012.5G can also be seen in this
figure, but is not mentioned by the authors. In Figure 1 the trend is more
clear due to the inclusion of the AXPs.

What could give random changes in the 
frequency that scale with B2?
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Random Walks
Regardless of the origin of the noise it can be approximated 
by a random walk in phase, frequency or torque. The random 
walk strengths have different dependence on the timing 
residuals.
(A more realistic assumption is a random walk in a valley)  
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We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of
the timing noise (�TN) with strong magnetic field dependence (�TN ⇠ B2

o⌦T 3/2) above Bo ⇠ 1012.5G. The
dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size.
We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the
moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may
be due to variation of this moment of inertia, and could be evidence of rapid global magnetospheric variability.

Introduction.— The spin evolution of pulsars and magne-
tars is studied by long term monitoring of pulse arrival times,
allowing the spin period, spin-down rate, orbital motion and
astrometric variations of the neutron star to be inferred. The
variation of these pulse arrival times from the best fit models
of the timing evolution is referred to as timing noise.

Timing noise was first observed in the Crab pulsar [1]
and has been identified as a ubiquitous property of pulsars
[2]. Recently much e↵ort has been made to understand the
stochastic timing noise in millisecond pulsars, as timing ar-
rays of low-noise recycled pulsars will allow the detection
of nanohertz gravitational waves [3]. Millisecond pulsars
typically have relatively low inferred surface magnetic field
(Bo ⇠ 107 � 108G), due to age and accretion history.

Most isolated pulsars have spin-down inferred surface mag-
netic fields in the range Bo ⇠ 1011 � 1013G, while the high-
est known magnetic fields are possessed by magnetars (Bo ⇠
1013 � 1015G). Magnetars include Anomalous X-ray Pulsars
(AXPs) whose X-ray luminosities dwarf their spin down lu-
minosities and most likely originate from internal magnetic
field decay [4]; and Soft Gamma Repeaters (SGRs), hard X-
ray transient sources that can undergo extreme outbursts.

Mode-changing and nulling behaviors in pulsars have been
linked to spin-down torque variations [5, 6], implying that
such behavior is indicative of variations of the open field line
regions of the magnetosphere. Recent simultaneous X-ray
and radio observations of PSR B0943+10 [7] have challenged
existing pulsar emission theories and provided evidence that
such variability is indicative of rapid global variations of the
magnetosphere.

In this Letter we study the timing noise for radio pulsars and
magnetars, inferring a source of timing noise in high B-field
pulsars and AXPs which correlates strongly with magnetic
field. We examine physical models to explain the dependence
of this timing noise on the spin-down inferred magnetic field,
and identify this timing noise as evidence for global magneto-
spheric variability.

Timing Noise Analysis.— Long term pulsar timing irregu-
larities have enjoyed a long history of detailed analysis [see
e.g. 8–12]. Here we adopt the approach of modelling tim-
ing noise as a random walk process [1, 13, 14]. In particular,
we utilize the formalism of Cordes [14] in order to define the
random walk strengths of various processes: S PN = R

D
(��)2

E
,

for a random walk in phase; S FN = R
D
(�⌦)2

E
, for a random

walk in frequency; and S SN = R
D
(�⌦̇)2

E
, for a random walk in

spin-down rate, where R is the occurrence rate of the random
walk steps, and

⌦ · ↵ indicates an ensemble average. The quan-
tities ��, �⌦, and �⌦̇ denote stochastic variations in phase,
frequency, and spin-down rate, respectively.

These strengths can be estimated from timing parameters
of a given pulsar and represent the strength of the assumed
random walk

S PN ' 2C2
0,m�

2
TNT�1, (1)

S FN ' 12C2
1,m�

2
TNT�3, (2)

S SN ' 120C2
2,m�

2
TNT�5, (3)

where, T is the time span over which the observations were
(uniformly) taken, �TN is the rms phase residual of the data for
a given timing solution, and C0,m, C1,m and C2,m are correction
factors [14, 15] to compensate for the power of the random
walk that has been removed by the mth order polynomial fit
that occurs when the residuals are determined.

Previous analyses [8, 10, 12] have shown that simple ran-
dom walk processes cannot explain the totality of timing
noise, with the di↵erent strengths sometimes varying strongly
even for the same pulsar as a function of timespan T . We
argue that if some random walk timing noise component be-
comes dominant as the magnetic field increases 8 orders of
magnitude from ⇠ 107G to ⇠ 1015G this should result in a
lower bound in the distribution of the random walk strength
that scales with the magnetic field.

In Figure 1 we show the random walk strengths for vari-
ous pulsars versus the spin-down inferred surface dipole mag-
netic field strength. The strength of the frequency noise
and spin-down noise has been normalized by ⌦2 and ⌦̇2,
respectively, so that the strengths can be compared across
pulsars with di↵ering timing profiles. Here, we utilize pub-
lished timing data from Jodrell Bank Observatory [8], and the
Parkes 64m radio telescope [16–21]. We also include the X-
ray timing results from the well-timed AXPs: 1E 1841�045
[22], RXS J170849.0�400910 [22], 4U 0142+61[23], and 1E
2259.1+586 [24]. We do not include the timing for AXP 1E
1547.0�5408 [25], as the timing observations have only been
taken post-outburst, nor AXP 1E 1048.1�5937 [26], as the
timing solution presented in the literature was fit using fifth or-
der splines rather than a simple polynomial fit, due to instabil-
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a trend with SFN/Ω2~B4,for B>1012.5G. 
(1183 Pulsars, 8 AXPs: Hobbs et al. 
2010, Yu et al. 2013, Parkes I, II, III, IV, VI; 
AXPs: Gavrill & Kaspi 2002, Dib et al. 
2007, 2008, did not include SGRs 
because they are only timed during 
outbursts).
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FIG. 1. E↵ective random walk strength for various pulsars as a func-
tion of spin-down inferred magnetic field strength (Bo). The fre-
quency noise (FN) and spin-down noise (SN) strengths have been
normalized by ⌦2 and ⌦̇2, respectively, to be comparable between
systems. The blue points denote normal pulsars, with radio tim-
ing information taken from Hobbs et al. [8], Yu et al. [16], and the
Parkes multi-beam survey [17–21]. The red circles label AXP timing
epochs, with X-ray timing information taken from Dib et al. [22, 23],
and Gavriil and Kaspi [24]. The e↵ective strength of the frequency
noise random walk shows a strong trend with magnetic field strength.
In particular the lower bound of the frequency noise strength distri-
bution appears to rise sharply for Bo >⇠ 1012.5 G as (S FN/⌦2)min ⇠ B4

o,
such that (�TN)min ⇠ B2

o⌦.

ity of the spin-down of 1E 1048.1�5937. We also ignore the
timing properties of SGRs (unlike Shannon and Cordes [9]),
which are only timed in a phase connected fashion for short
periods following outbursts where timing noise would likely
be elevated by the burst activity. In quiescence, where the tim-
ing noise would not be dominated by such events, SGRs are
faint and have not been observed with su�cient regularity for
a phase connected solution to emerge.

While there is no obvious correlation between magnetic
field strength and the random walk strengths for phase noise
(S PN) or spin-down noise (S SN/⌦̇2) in Figure 1, there appears
to be a weak correlation of the FN strength (S FN/⌦2) with Bo

across the range of magnetic field1. We note, however, that
above a field strength of Bo >⇠ 1012.5 G, the lower bound of
the FN strength distribution rises sharply with (S FN/⌦2)min ⇠
⌦̇2/⌦6 ⇠ B4

o. We focus on FN as the change in S FN along this
lower envelope is larger than the intrinsic scatter of the distri-
bution for FN (particularly due to the inclusion of AXP timing
data). Thus, we infer that timing noise has a component which
depends strongly on the magnetic field and becomes dominant
as the magnetic field increases such that (�TN)min ⇠ B2

o⌦T 3/2

above Bo >⇠ 1012.5 G. These scalings are within the 2� con-
fidence intervals for the timing noise scalings inferred by [9]
for magnetars, except for the dependence on T , which may be
di↵erent due to their inclusion of SGRs.

Caution must be used in interpreting such scalings as B2
o ⇠

⌦̇/⌦3, and is only inferred from the spin observables. With
this in mind, we consider two di↵erent physical models of
timing noise due to magnetospheric variability, torque varia-
tion, and moment of inertia variation.

Magnetospheric Torque Variation.— Spin-down torque
variation and mode-changing are associated with perturba-
tions of the open field lines [5, 6]. The e↵ect of these torque
variations on the timing noise has been explored in detail by
Cheng [27], who showed that the frequency noise strength for
torque variability should scale as S FN/⌦2 ⇠ ⌦̇2/⌦3 ⇠ B4

o⌦
3,

which is inconsistent with the scaling discussed above. Thus,
while this source of noise may dominate in some pulsars, par-
ticularly those where significant pulse-shape changes are ob-
served, it is not the source of the high magnetic field timing
noise floor evident in Figure 1.

Magnetospheric Moment of Inertia.— The angular momen-
tum content of a small volume of the magnetosphere in the
inertial frame [28] is dL = (r⇥S/c2)dV where S is the Poynt-
ing vector and dV is the volume element. In a co-rotating
ideal-MHD magnetosphere with angular velocity ⌦, we can
evaluate this as

dL =

"
r ⇥ (⌦ ⇥ r)

B2

4⇡c2 � (r ⇥ B)
B · (⌦ ⇥ r)

4⇡c2

#
dV. (4)

In cylindrical coordinates, ($, z, �), the component of the
angular momentum along the rotation axis is dLz =

1
4⇡c2$

2⌦(B2
$ + B2

z )dV. Thus the angular momentum of the
magnetosphere in the direction of the rotation is given by the
integrated angular momentum of the magnetic energy density
with the component of the magnetic field in the azimuthal di-
rection removed, as the component of the magnetic field in the
direction of motion should not contribute to the Poynting flux
in that direction.

1 The weak correlation of this timing noise with magnetic field for lower
field strengths has been noted previously, see e.g. Figure 9 of Hobbs et al.
[8], where timing noise is measured by the parameter �z(10yr). The onset
of a sharp increase in �z(10yr) above Bo ⇠ 1012.5G can also be seen in this
figure, but is not mentioned by the authors. In Figure 1 the trend is more
clear due to the inclusion of the AXPs.
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For a dipole with magnetic moment µo, where |µo| = Bor3
NS

and 2Bo is the field strength at the magnetic pole at the NS sur-
face rNS, we calculate the magnetospheric angular momentum
(for light-cylinder radius $LC = c/⌦ � rNS) using (4)

LB '
16
15
µ2

o⌦

c2rNS
+

1
15c2rNS

(µ2
o⌦ � [µo ·⌦]µo). (5)

For the aligned rotator this gives LB,aligned '
(16/15)B2

or5
NS⌦/c

2, while for the oblique rotator we have
LB,oblique ' (17/15)B2

or5
NS⌦/c

2.
For a magnetic field strength B15 ⌘ Bo/1015 G, neutron star

radius r6 ⌘ rNS/(106 cm) and mass M1.4 = MNS/(1.4M�) we
can compare the moment of inertia in the magnetosphere to
that in the neutron star IB/INS = LB/LNS,

IB,aligned

INS
' 1.0 ⇥ 10�6B2

15r3
6 M�1

1.4

 
⌘

2/5

!�1

(6)

for the aligned rotator, where ⌘ ⌘ INS/(MNSr2
NS) = 2/5 for a

uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth

FIG. 2. A measure of the moment of inertia variability Ṅ1/2
1yr�Irms/Ic

versus the surface magnetic field strength Bo for the same pulsars
and magnetars shown in Figure 1. Ṅ1yr is the number of moment
of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
IB/INS (assuming an aligned dipole for a 1.4M� mass neutron star
with radius 12 km).

polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n

where n is the braking index of the neutron star. This gives

�⌦(t) = �⌦S (t)
�I(t)

Ic
�

tZ
n⌦̇S (t0)

�I(t0)
Ic

dt0 (7)

The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =

q
(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well
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Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth

FIG. 2. A measure of the moment of inertia variability Ṅ1/2
1yr�Irms/Ic

versus the surface magnetic field strength Bo for the same pulsars
and magnetars shown in Figure 1. Ṅ1yr is the number of moment
of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
IB/INS (assuming an aligned dipole for a 1.4M� mass neutron star
with radius 12 km).

polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n

where n is the braking index of the neutron star. This gives
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =

q
(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well

Assuming a step-size for the 
variations in the magnetic field and 
a frequency  we can relate it to 
the strength of the random walk.

3

For a dipole with magnetic moment µo, where |µo| = Bor3
NS
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for the aligned rotator, where ⌘ ⌘ INS/(MNSr2
NS) = 2/5 for a

uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth
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versus the surface magnetic field strength Bo for the same pulsars
and magnetars shown in Figure 1. Ṅ1yr is the number of moment
of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
IB/INS (assuming an aligned dipole for a 1.4M� mass neutron star
with radius 12 km).

polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n

where n is the braking index of the neutron star. This gives

�⌦(t) = �⌦S (t)
�I(t)
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =

q
(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well
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for the aligned rotator, where ⌘ ⌘ INS/(MNSr2
NS) = 2/5 for a

uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth
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versus the surface magnetic field strength Bo for the same pulsars
and magnetars shown in Figure 1. Ṅ1yr is the number of moment
of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
IB/INS (assuming an aligned dipole for a 1.4M� mass neutron star
with radius 12 km).

polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n

where n is the braking index of the neutron star. This gives
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =

q
(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well
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for the aligned rotator, where ⌘ ⌘ INS/(MNSr2
NS) = 2/5 for a

uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth

FIG. 2. A measure of the moment of inertia variability Ṅ1/2
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versus the surface magnetic field strength Bo for the same pulsars
and magnetars shown in Figure 1. Ṅ1yr is the number of moment
of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
IB/INS (assuming an aligned dipole for a 1.4M� mass neutron star
with radius 12 km).

polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n

where n is the braking index of the neutron star. This gives
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =

q
(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well

We assume that the frequency in 
magnetospheric variations is similar 
to moding of pulsars (hours-days 
variation of 10-4 of the B field).
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for the aligned rotator, where ⌘ ⌘ INS/(MNSr2
NS) = 2/5 for a

uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth
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and magnetars shown in Figure 1. Ṅ1yr is the number of moment
of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
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polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =
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(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well
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for the aligned rotator, where ⌘ ⌘ INS/(MNSr2
NS) = 2/5 for a

uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth

FIG. 2. A measure of the moment of inertia variability Ṅ1/2
1yr�Irms/Ic

versus the surface magnetic field strength Bo for the same pulsars
and magnetars shown in Figure 1. Ṅ1yr is the number of moment
of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
IB/INS (assuming an aligned dipole for a 1.4M� mass neutron star
with radius 12 km).

polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n

where n is the braking index of the neutron star. This gives

�⌦(t) = �⌦S (t)
�I(t)
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =

q
(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well

Using the glitches as a probe of the noise, we 
find a floor in the smallest glitch detected in 
high B-field pulsars.

We assume that the frequency in 
magnetospheric variations is similar 
to moding of pulsars (hours-days 
variation of 10-4 of the B field).
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uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].
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Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth
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tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =
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(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well
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for the aligned rotator, where ⌘ ⌘ INS/(MNSr2
NS) = 2/5 for a

uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth
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versus the surface magnetic field strength Bo for the same pulsars
and magnetars shown in Figure 1. Ṅ1yr is the number of moment
of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
IB/INS (assuming an aligned dipole for a 1.4M� mass neutron star
with radius 12 km).

polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n

where n is the braking index of the neutron star. This gives

�⌦(t) = �⌦S (t)
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =

q
(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well

Using the glitches as a probe of the noise, we 
find a floor in the smallest glitch detected in 
high B-field pulsars.
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for the aligned rotator, where ⌘ ⌘ INS/(MNSr2
NS) = 2/5 for a

uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
density ⇢GJ = ⌦ · B/[2⇡c(1 � ($/$LC)2] [31]. Near the
NS surface, $ ⌧ $LC , the ratio of the Goldreich-Julian
plasma energy density to the magnetic field energy density
is EGJ/Emag ⇠ 10�19(⌦/s�1)(µo/1030G cm3)�1($/106cm)3.
The radius $eq at which the energy density of the plasma is
comparable with the magnetic field energy density can be es-
timated as$eq = $LC

p
1 � 4c4me/(µo⌦2e). For a pulsar with

Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
close to the light cylinder. Relativistic force-free solutions of
the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
is much shorter than the timescale of the variability. This
strongly coupled component is the part of the star that can
then respond e↵ectively to the moment of inertia variation.
We also define⌦(t) = ⌦S (t)+�⌦(t) where⌦S (t) is the smooth

FIG. 2. A measure of the moment of inertia variability Ṅ1/2
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of inertia random walk steps that occur per year. We compare this
to the fractional moment of inertia contained in the magnetosphere,
IB/INS (assuming an aligned dipole for a 1.4M� mass neutron star
with radius 12 km).

polynomial behavior of the angular velocity and the stochas-
tic component is �⌦(t). Ignoring spin-down torque variations
that could occur from magnetospheric variation near the open
field lines, we solve for the �⌦(t) to first order in �I/Ic and
�⌦/⌦S , assuming that the torque takes the form N = ↵⌦n
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =
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where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well
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uniform rotating sphere. While this ratio depends strongly on
the NS radius, typical equations of state which allow masses
as large as the observed 2M�, have radii varying by at most
⇠ 20% over the range of expected NS masses [29, 30].

Magnetospheric plasma has at least the Goldreich-Julian
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Bo ' 1012G, this gives $eq ' 0.999$LC which is extremely
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the magnetosphere that take into account the poloidal currents
[32] lead to similar results as their di↵erences are concentrated
near the light cylinder, while most of the mass and energy
density is near the NS surface. Thus the contribution of the
Goldreich-Julian plasma to the moment of inertia of the mag-
netosphere can be safely ignored.

Magnetospheric Variability.— Mode-changing and nulling
events are related to rapid variability of the open field line re-
gion of the magnetosphere [5, 6]. Recent observations have
shown that such rapid variability may be a global magneto-
spheric phenomenon [7], and not simply confined to the open
field line region. Thus, the magnetospheric moment of inertia
could also vary on a short timescale.

The equation of motion for rotation is d
dt [I(t)⌦(t)] = N(t),

where N(t) is the external torque on the neutron star. We de-
fine I = Ic + �I(t) where �I(t) is a stochastic component to the
moment of inertia that we will associate with magnetospheric
variations, and Ic is the moment of inertia of the NS that is
strongly coupled to the crust such that the coupling timescale
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that could occur from magnetospheric variation near the open
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The second term is much smaller than the first term as long
as the observed time span is short compared to T ⌧ ⌧c ⌘
⌦S /2⌦̇S >⇠ 104 years for typical magnetars.

Modeling the stochastic variation of the moment of inertia
as a random walk we have �I(t) =

P
j �I jH(t � t j), where �I j

and t j are random amplitudes and times, while H(t) is the unit
step function. The first term of equation (7) then corresponds
to a random walk in frequency, while the second term is a
random walk in frequency derivative. Considering realistic
observing spans the first term must dominate. Using the defi-
nition of S FN, the variability of the moment of inertia can then
be expressed in terms of the frequency noise random walk
strength,

Ṅ1/2
1yr�Irms/Ic =

q
(S FN/⌦2) ⇥ 1 yr , (8)

where we have chosen to use the parameter Ṅ1yr ⌘ R ⇥ 1 yr,
the number of random walk steps per year. This value is
plotted against magnetic field strength in Figure 2, as well

Using the glitches as a probe of the noise, we 
find a floor in the smallest glitch detected in 
high B-field pulsars.
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as various fractions of the magnetospheric moment of inertia
IB/INS, assuming an aligned magnetic dipole and a neutron
star mass 1.4M� and radius 12 km. We note here that above
Bo ' 1012.5G the moment of inertia variability is bounded by
Ṅ1/2

1yr�Irms/Ic ⇠ (0.1�1)IB/INS. If the timing noise observed at
this lower bound is due to variability of the moment of inertia
it follows then that Ṅ1/2

1yr (�Irms/IB)(INS/Ic) ⇠ 0.1 � 1.

Assuming Ṅ1yr ⇠ 105 � 107 to reflect the variability
timescales observed in pulsar nulling or mode-changing [5],
and the strongly coupled fraction of the NS moment of inertia
to be Ic/INS ⇠ 0.1[27] over the variability timescale, we can
estimate the rms amplitude of the magnetospheric moment of
inertia variability, �Irms ⇠ (10�4 � 10�6) IB.

The magnetosphere is expected to be dynamic near the light
cylinder, due to reconnection and instability [32, 33]. This
may also contribute to the timing noise through magneto-
spheric moment of inertia variation, however the amplitude of
this contribution to the random walk strength is suppressed a
factor (rNS⌦/c)2 ⇠ 10�9s2⌦2, due to the much weaker contri-
bution to the moment of inertia near the light cylinder. We find
that this component is too small to contribute substantially to
the timing noise discussed above. This implies that the vari-
ability of the moment of inertia must instead occur near the
NS surface, where the magnetospheric moment of inertia is
largest.

Comparison to Glitch Sizes.— Glitches in pulsars and mag-
netars are impulsive increases in the rotation frequency. They
are thought to represent a sudden transfer of angular momen-
tum from a more quickly rotating super-fluid component to
the NS crust. While glitches can vary across several orders of
magnitude in size for a single pulsar, the smallest detectable
glitch sizes can also serve as a measure of timing noise.

The smallest detectable glitch size can be estimated from
the timing noise level, by comparing the (pre-fit) phase change
due to the stochastic noise over the data span required to in-
ferred the existence of small glitch, to the phase change due to
the glitch itself, ��TN(�t) ' S 1/2

FN (�t)3/2/
p

12 <⇠ �⌦glitch�t
for frequency noise. If the expected phase change due to
the noise is larger than the phase change due to the glitch,
then a glitch cannot be definitively identified. Oversimplify-
ing the details of observational cadence and analysis we can
then estimate the smallest observable glitch size by assuming
that several (⇠ 3) time-of-arrival observations, with cadence
⇠ 1 month, on either side of a small glitch are needed to
characterize it. Combining these assumptions with the tim-
ing noise levels estimated above we arrive at the estimate
(�⌦/⌦)glitch >⇠ (0.02 � 0.2)IB/INS.

In Figure 3 we show the relative glitch sizes (�⌦/⌦) as a
function of magnetic field for the glitching pulsars listed in
the literature [16, 34]. We also include glitches from AXPs
4U 0142+61 [24], 1E 2259.1+586 [24], 1E 1841�045 [22],
RXS J170849.0�400910 [22] and 1E 1048.1�5937 [26]. Also
plotted is the ratio of the magnetospheric moment of inertia to
the NS moment of inertia (IB/INS) as a function of Bo, as well
as 10%, and 1% of this value. We find that for Bo >⇠ 1013 G, the

FIG. 3. Relative glitch size, �⌦/⌦, versus the spin-down inferred
magnetic field strength Bo, for radio pulsar glitches, taken from Es-
pinoza et al. [34] and Yu et al. [16], and for AXP glitches [22, 24, 26].
The ratio of the magnetospheric moment of inertia to the total mo-
ment of inertia (IB/INS), is also plotted as a function of Bo, along with
10% and 1% of IB/INS. The minimum observed glitch size serves as
a proxy for the timing noise, scaling with (�⌦/⌦)min ⇠ 0.3IB/INS for
Bo >⇠ 1013G and is consistent with our estimates of timing noise.

minimum observed glitch is roughly given by (�⌦/⌦)glitch >⇠
0.3IB/INS, which is consistent with our estimates above. Thus,
we find consistent evidence from glitches for an increase with
Bo of the timing noise floor.

While in principle a glitch due to change in the magneto-
spheric moment of inertia could be detected, it would require
a large (>⇠ 10%) change in the total magnetospheric moment of
inertia to be above the minimum detectable glitch size thresh-
old set by the timing noise. Such an event would almost cer-
tainly be accompanied by torque variations and particle out-
flows, as seen during giant flares in SGRs, which would dom-
inate the timing change due to the magnetospheric moment of
inertia.

Discussion.— We have examined pulsar and AXP timing
noise measurements reported in the literature and shown that
a component of timing noise exists which depends on the spin-
inferred dipole surface magnetic field strength (S FN/⌦2 ⇠ B4

o
such that �TN ⇠ B2

o⌦T 3/2). This timing noise component be-
gins to dominate at Bo ⇠ 1012.5 G, and is responsible for a
sharp rise in the floor of the timing noise values across both
pulsar and AXP populations.

This provides yet another connection between high-B radio
pulsars and AXPs, demonstrating a continuum of behaviors in
these neutron stars, as independently suggested by, for exam-
ple, quiescent X-ray luminosities of these objects [35], further
‘unifying’ radio pulsars and AXPs [36].

Variations near the open field lines can lead to mode chang-

We assume that the frequency in 
magnetospheric variations is similar 
to moding of pulsars (hours-days 
variation of 10-4 of the B field).
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Assuming that the magnetosphere suffers random variations we 
expect random steps in frequency.

We know that the magnetosphere is active (moding - nulling 
events).

Such activity shall be seen as timing noise or in extreme cases as 
glitches.  
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