Accretion in supergiant High Mass X-ray Binaries

Antonios Manousakis

N. Copernicus Astronomical Center

Accretion in supergiant High Mass X-ray Binaries

INTEGRAL and **HMXBs**

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

Stellar Winds

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

IGR J17252-3616

Manousakis & Walter 2011, A&A, 526, A62

INTEGRAL from 2003-2009, exposure of ~ 3.5 Msec

Hydro simulations

Manousakis, Walter, and Blondin 2012, A&A, **547**, A20 ESA Press Release Nov. 9, 2012

⊠Use of VHI

(developed by J. Blondin at NCSU)
Radiatively driven stellar winds (CAK)
Low terminal velocity and moderate mass loss rate are required for large absorption.

Parameters

L*, R*, M*,T*	Derived from optical/IR
α	Orbital solution
ρ₀, CAK-α, CAK-k	Fixed from v_{∞} and M_w
ξ _{crit}	Photoionisation model

Parameters for the wind disruption:

L _X	INTEGRAL/XMM obs.
M _{NS}	may vary (assumed 1.5 M_{\odot})

Grid of models for M_{NS} , v_{∞} , M_{w}

Accretion in sgHMXBs

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

Hydro simulations

\mathbf{M} Mass of the NS can be constrained: $M_{NS} \sim 1.8-2.1 \ M_{\odot}$

Accretion in sgHMXBs

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

EOS for neutron stars

Accretion in sgHMXBs

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

Simulated vs Observed L_x

Self-organized criticality (Bak et al. 1988)?!

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

Vela X-I : Data

Accretion in sgHMXBs

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

Vela X-I: simulations

Manousakis & Walter 2013, submitted A&A

Accretion in sgHMXBs

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

Vela X-I: simulations

Variability amplitude matches the observations
 Log-normal distribution similar to the observed ones
 Bow-shock variability time-scale matches the observed oscillations

NB: parameters are not tuned to match the observations

Conclusions

- Obscured HMXB can be understood with low wind velocities.
- Comparison of hydrodynamic simulations with observations allows to constrain neutron star mass and orbital radius, independently of dynamical estimates.
- Hydro-simulations produce log-normal distribution of the accretion rates and off-states (and flares).

Self-organized criticality of the accretion stream (?)

Future Perspectives

FLASH 3D AMR -> (more) realistic sim.

More Realistic Stellar Winds

Accretion in sgHMXBs

Sept. 10, 2013 - Hel.A.S. Conf. 2013, Athens

A. Manousakis - CAMK-PAN

Thank you for your attention

Questions?