Tracing non-conservative mass transfer eras in close binaries from observed period variations

Nikolaos Nanouris⁽¹⁾

Anastasios Kalimeris⁽²⁾

Evgenia Antonopoulou⁽¹⁾

Eleni Rovithis-Livaniou⁽¹⁾

⁽¹⁾ National & Kapodistrian University of Athens

⁽²⁾ Technological & Educational Institute of Ionian Islands

The 11th Hellenic Astronomical Conference 8-12 September 2013, Athens

Eclipsing Binaries

Primary minimum

Accurate determination of orbital / physical parameters:

P, i, q, T, L, M, R, logg

Light Curve

RT And (Pribulla et al. 2000)

Roche geometry - Classification -

Roche lobes: inner equipotential surface

Lagrangian points: lowest potential barriers

L1: mass transfer L2: mass loss (donor, the more massive) L3: mass loss (donor, the less massive)

O-C diagrams (Eclipse Timing Variations)

O(E)-C(E) differences \Rightarrow O-C diagrams

if $\Delta T(E)$ represents an O-C diagram \Rightarrow Period diagram: $P(E) = P_e + \Delta T(E) - \Delta T(E-1)$

Conservative mass transfer: Modes

0.5 $\omega_{\rm d} = \omega_{\rm d}(q)$ $\omega_{\min} = \omega_{\min}(q)$ + 0.4 (Lubow & Shu 1975) 0.3 **Direct impact mode** ٥٥ r/a No disk 0.2 ω 0.1 **Transient disk** ω_{min} Permanent disk Accretion disk mode 0.0 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 Mass Ratio

r-q diagram (Kaitchuck et al. 1985)

Critical gainer's radius

Conservative mass transfer

All the transferred mass is captured by the gainer !

 M_1 : mass of the primary component, M_2 : mass of the secondary component $q = M_2/M_1 \le 1$: mass ratio of the system, r_r : disk radius (dimensionless)

 $r_r = r_r(q)$ (Lubow & Shu 1975, Verbunt & Rappaport 1988)

 $q < q_{cr} = 0.59$: the period increases, $q > q_{cr} = 0.59$: the period decreases !!!

Non-conservative mass transfer: Paths

Hot spot (re-)emission

Why a hot spot ?

the gaseous flow stream trajectories tend to converge on landing points of the gainer, localized in a rather small region compared to the overall star surface (Kruszewski 1964)

Why (re-)emission ?

the radiative energy a hot spot is strengthened due to the limited accreted zone and, along with the rotational kinetic energy, surmounts the gravitational binding energy. The system is subject to a liberal era, expected soon after the onset of the RLOF phase (van Rensbergen et al. 2008) Mass loss via the L2/L3 points

Why via L2/L3?

They are paths that matter can escape most easily from the gravitational field of the binary, demanding the lowest energy than elsewhere. A circumbinary disk can form in this way (Shu et al. 1979, Sytov et al. 2007, Basikalo 2010, Mennickent et al. 2012a,b).

via L2: primary component as the donor via L3: secondary component as the donor

AML through L2/L3 >> AML through a hot spot

Non-conservative mass transfer: Paths

Non-conservative mass transfer: Hot spot re-emission

All the transferred mass is re-emitted by the gainer !

 M_1 : mass of the primary component, M_2 : mass of the secondary component m_{hs} : mass lost from the system, j_{hs} : stream's specific angular momentum

 $j_{\rm hs} = j_{\rm hs}(q)$ (de Mink et al. 2007, van Rensbergen et al. 2011)

<u>Donor</u>

Primary component $\frac{\dot{P}}{P} = \begin{bmatrix} -\frac{3q+2}{M_1 + M_2} + \frac{3(1+q)}{M_2} j_{hs} \end{bmatrix} \dot{m}_{hs}$ Secondary component $\frac{\dot{P}}{P} = \begin{bmatrix} -\frac{3q^{-1}+2}{M_1 + M_2} + \frac{3(1+q)}{M_2} j_{hs} \end{bmatrix} \dot{m}_{hs} > 0$

 $q < q_{cr} = 0.72$: the period decreases, $q > q_{cr} = 0.72$: the period increases !!!

Non-conservative mass transfer: Mass loss via L2/L3

All the transferred mass is rejected by the gainer !

 M_1 : mass of the primary component, M_2 : mass of the secondary component $m_{L2/L3}$: mass lost from the system, $j_{L2/L3}$: stream's specific angular momentum

 $j_{L2/L3} = j_{L2/L3}(q)$ (Shu et al. 1979, Nanouris et al. 2013)

<u>Donor</u>

Primary component

$$\frac{\dot{P}}{P} = \left[-\frac{3q+2}{M_1 + M_2} + \frac{3(1+q)}{M_2} j_{L2} \right] \dot{m}_{L2} < 0$$

Secondary component

$$\frac{\dot{P}}{P} = \left[-\frac{3q^{-1}+2}{M_1+M_2} + \frac{3(1+q)}{M_2} j_{L3} \right] \dot{m}_{L3} < 0$$

the period decreases for any q!!!

Non-conservative mass transfer: Primary as the donor

Part of the transferred mass is re-emitted/rejected by the secondary !

 β : degree of liberalism ($\beta = 1$: fully conservative case, $\beta = 0$: fully liberal case)

 $\dot{M}_2 = -\beta \dot{M}_1$: mass captured by the secondary, $\dot{m} = (1 - \beta) \dot{M}_1$: mass escaped from the system

ML through a hot spot			ML through the L2 point	
β (liberalism)	q_{cr} (for $r_r = 0$)	$\boldsymbol{q_{cr}}$ (for $r_r \neq 0$)	q_{cr} (for $r_r = 0$)	q_{cr} (for $r_r \neq 0$)
0.0	0.721	0.721	-	-
0.1	0.744	0.774	-	-
0.2	0.768	0.833	-	-
0.3	0.793	0.897	-	-
0.4	0.820	0.968	-	-
0.5	0.847	-	-	-
0.6	0.876	-	-	-
0.7	0.905	-	-	-
0.8	0.936	-	-	-
0.9	0.967	_	_	_
1.0	1.000	_	1.000	_

Binaries with mass ratio q greater than the listed q_{cr} values will reveal an increasing period (and a convex O–C diagram) !!! ¹¹

Non-conservative mass transfer: Secondary as the donor

Part of the transferred mass is re-emitted/rejected by the primary !

 β : degree of liberalism ($\beta = 1$: fully conservative case, $\beta = 0$: fully liberal case)

 $\dot{M}_1 = -\beta \dot{M}_2$: mass captured by the secondary, $\dot{m} = (1 - \beta) \dot{M}_2$: mass escaped from the system

ML through a hot spot		ML through the L3 point		
β (liberalism)	q_{cr} (for $r_r = 0$)	$\boldsymbol{q_{cr}}$ (for $r_r \neq 0$)	q_{cr} (for $r_r = 0$)	q_{cr} (for $r_r \neq 0$)
0.0	-	-	-	-
0.1	-	-	0.047	0.011
0.2	-	-	0.104	0.041
0.3	-	-	0.168	0.078
0.4	-	-	0.240	0.121
0.5	-	0.954	0.322	0.172
0.6	-	0.876	0.417	0.231
0.7	-	0.801	0.527	0.300
0.8	-	0.728	0.657	0.381
0.9	_	0.659	0.813	0.477
1.0	1.000	0.591	1.000	0.591

Binaries with mass ratio q greater than the listed q_{cr} values will reveal a decreasing period (and a concave O–C diagram) !!! ¹²

Case study 1: RR Dra

Semi-detached binary (donor: secondary, O-C diagram: convex)

 $M_1 = 2.15 M_{\odot}, M_2 = 0.6 M_{\odot}, q = 0.279$ (Svechnikov & Kuznetsova 1990)

 $\mathbf{P} = 2.8312 \text{ d}, \ \mathbf{dP/dt} = +8.9079 \times 10^{-9} \text{ (Zasche et al. 2008)}$

Evidence for a transient disk (Kaitchuck et al. 1985)

Case study 1: RR Dra

ML through a hot spot			ML through the L3 point	
β	dM_1/dt	dm/dt	dM_1/dt	dm/dt
(degree of	$[M_{\odot}/yr]$	$[M_{\odot}/yr]$	$[M_{\odot}/yr]$	$[M_{\odot}/yr]$
liberalism)	(for $r_r \neq 0$)	(for $r_r \neq 0$)	(for $r_r \neq 0$)	(for $r_r \neq 0$)
0.0	0.00	-2.64×10 ⁻⁰⁷	_	-
0.1	2.84×10^{-08}	-2.56×10-07	-	-
0.2	6.12×10 ⁻⁰⁸	-2.45×10-07	-	-
0.3	9.95×10 ⁻⁰⁸	-2.32×10 ⁻⁰⁷	-	-
0.4	1.45×10-07	-2.17×10-07	-	-
0.5	1.99×10-07	-1.99×10 ⁻⁰⁷	-	-
0.6	2.66×10-07	-1.77×10 ⁻⁰⁷	-	-
0.7	3.49×10-07	-1.50×10-07	6.49×10 ⁻⁰⁶	-2.78×10 ⁻⁰⁶
0.8	4.56×10-07	-1.14×10 ⁻⁰⁷	1.64×10 ⁻⁰⁶	-4.09×10 ⁻⁰⁷
0.9	5.99×10-07	-6.66×10-08	1.04×10-06	-1.15×10 ⁻⁰⁷
1.0	8.00×10-07	0.00	8.00×10-07	0.00

Conservative case without disk: $dM_1/dt = 3.2 \times 10^{-7} M_{\odot}/yr$ (Zasche et al. 2008)

Case study 2: X Tri

Semi-detached binary (donor: secondary, O-C diagram: concave)

 $M_1 = 2.3 M_{\odot}, M_2 = 1.2 M_{\odot}, q = 0.522$ (Mezzetti et al. 1980)

 $\mathbf{P} = 0.9715 \text{ d}, \ \mathbf{dP/dt} = -1.5269 \times 10^{-10} \text{ (Liakos et al. 2010)}$

Case study 2: X Tri

ML through the L3 point				
β	dM ₁ /dt	dm/dt	dM_1/dt	dm/dt
(degree of	$[M_{\odot}/yr]$	$[M_{\odot}/yr]$	$[M_{\odot}/yr]$	$[M_{\odot}/yr]$
liberalism)	(for $r_r = 0$)	(for $r_r = 0$)	(for $r_r \neq 0$)	(for $r_r \neq 0$)
0.0	0.00	-2.15×10 ⁻⁰⁸	0.00	-2.10×10 ⁻⁰⁸
0.1	2.45×10^{-09}	-2.21×10 ⁻⁰⁸	2.35×10-09	-2.11×10 ⁻⁰⁸
0.2	5.89×10 ⁻⁰⁹	-2.36×10 ⁻⁰⁸	5.33×10 ⁻⁰⁹	-2.13×10 ⁻⁰⁸
0.3	1.11×10^{-08}	-2.58×10 ⁻⁰⁸	9.24×10-09	-2.16×10 ⁻⁰⁸
0.4	1.98×10^{-08}	-2.96×10 ⁻⁰⁸	1.46×10^{-08}	-2.19×10 ⁻⁰⁸
0.5	3.73×10 ⁻⁰⁸	-3.73×10 ⁻⁰⁸	2.24×10^{-08}	-2.24×10 ⁻⁰⁸
0.6	9.14×10 ⁻⁰⁸	-6.10×10 ⁻⁰⁸	3.47×10^{-08}	-2.31×10 ⁻⁰⁸
0.7	-	-	5.72×10 ⁻⁰⁸	-2.45×10^{-08}
0.8	-	-	1.12×10^{-07}	-2.79×10 ⁻⁰⁸
0.9	_	_	4.25×10-07	-4.72×10 ⁻⁰⁸
1.0	_	-	_	-

Concluding remarks

Both the presence of a transient disk and a possible non-conservative mass transfer status are able to change considerably the monotony of the period variations and the morphology of the respective O-C diagrams.

Critical mass ratios may arise for a certain degree of liberalism !

But... the simplistic β -q schemes seem to be insufficient in describing the short orbital evolution of a binary in which MT is not the leading orbital period evolutionary mechanism.

Efficiency of O-C diagrams as diagnostic tools for long-term period variations. II. Non-conservative mass transfer and gravitational radiation Nanouris N., Kalimeris A., Antonopoulou E., Rovithis-Livaniou H. **To be submitted, A&A (2013)**