Star Formation through the Chemical Lens

Konstantinos Tassis

University of Crete

Collaborators: Karen Willacy, Harold Yorke, Neal Turner (JPL/Caltech) Talayeh Hezareh (MPIfR)

Why star formation?

- One of the major open problems in astrophysics
 Intensely interdisciplinary
 requires knowledge of different areas of physics:
 fluid dynamics, plasma physics, interaction of radiation with matter,
 condensed matter physics, atomic and nuclear physics
- Prerequisite for the understanding of galaxy formation/ evolution Connects luminous universe (stars) with dark/exotic sector (DM,DE)

Dark matter

Luminous matter

• "We are made of star stuff" Carl Sagan

Stars Form in Molecular Clouds

- Massive (10³−10⁶ M_☉)
- Cold (T ≈ 10K)
- Molecular (mostly H₂, dust ≈ 1% by mass)

Taurus Optical ESO/Davide De Martin

• Turbulent & Magnetized

Too cold for H_2 emission. Most of the mass not visible. MCs appear dark in the visible.

How are MCs observed?

CO emission

Dust Extinction

Pineda et al. 2010

How are MCs observed?

IC 5146

Dust Emission

Herschel/ Gould Belt Survey Andre et al. 2010

Cores

Alves et al. 2007

How do cores form?

Weak B Field

- Molecular clouds supported by turbulence
- Turbulence (super-)Alfvenic magnetic fields weak
- Overdensities created by compression in converging flow regions
 - Some become jeans unstable (collapse)
 - Some reexpand (transient clumps)
- Eventually, hydrostatic protostars are formed in the collapsing cores

Strong B Field

- Molecular clouds mainly magnetically supported
- Turbulence (sub-)Alfvenic
- Ambipolar Diffusion
 - Damps MHD turbulence below a critical scale (cloud fragmentation)
 - Formation of magnetically supercritical cores
- Supercritical cores contract dynamically
- Eventually, hydrostatic protostars are formed

Looking Through the Chemical Lens

The Coming Flood of Molecular Line Data

Stratospheric Observatory For Infrared Astronomy

The Plan: Produce Toolkit for Connecting Observations to Theories

- Chemistry + Dynamics + Radiative Transfer + Free Parameters + Projection Effects → Observables
- Produce database of observables from all combinations
- Make freely available, easily accessible
- Uses for such a database:
 - Identify observables that discriminate between theories
 - Design observing strategies, future observatories
 - Provide initial conditions for star and planet formation

Coupling of chemistry and dynamics

No B field

Chemistry affected by Dynamics but dynamics not affected by chemistry

Chemistry affected by dynamics and vice versa when B-field included

Ambipolar drift and other non-ideal MHD phenomena depend sensitively on chemistry

First Step: The Chemical Network

	Gas-phase species														
H+	Н	H_2^+	H ₂	H_3^+	He	He ⁺	C ⁺	С	CH	CH ⁺	CH_2^+	CH ₂	Ν	N^+	CH ₃
NH ⁺	CH_3^+	NĤ	NH_2^+	Ő	CH_4	CH_4^+	O^+	NH_2	CH_5^+	OH	OH^{+}	NH_3^+	NH ₃	H_2O	NH_4^+
H_2O^+	H_3O^+	C_2	C_2^+	C_2H^+	C_2H	$C_2H_2^+$	C_2H_2	CN	CN [∓]	HCN ⁺	$C_2H_3^+$	HCN	HNC	Si ⁺	$C_2H_4^+$
H_2NC^+	Si	N_2	CO ⁺	HCNH ⁺	CO	N_2^+	HCO	N_2H^+	HCO ⁺	H_2CO	H_2CO^+	NO	NO^+	H_3CO^+	CH ₃ OH
O ₂	O_2^+	$CH_3OH_2^+$	C_3^+	C_3H^+	C_2N^+	CNC ⁺	$C_3H_3^+$	CH ₃ CN	C_3H_2	CO_2	CO_2^+	HCO_2^+	HC ₃ N		
							Grain ma	antle specie	s						
н	С	CO	H ₂ CO	Si	C ₂	O ₂	CH	OH	NO	CH_2	H_2O	CO ₂	CH ₃	CH_4	HNC
C ₂ H ₂ CH ₂ OH	HC ₃ N	N ₂	CN	NH	HCN	C ₂ H	NH3	CH ₃ CN	CH ₃ OH	NH ₂	Ň	0	H ₂	HCO	C_3H_2

- 78 gas phase species + 33 grain ice mantle species (H, He, C, N, O, Si), 1553 reactions from UMIST
- Embedded cores ($A_v \ge 3$ mag), CO self-shielding
- Grains: MRN distribution of grains, negatively charged, fixed abundance, Grain Processes: freezeout, thermal desorption, cosmic-ray heating, & surface reactions
- Non-Equilibrium chemistry

Degeneracies in Unresolved Cores

- Large chemical differentiation
- Large degeneracies
- Weak evolution: Average abundances dominated by the lower density outer parts

Central Parts Evolve

Depletion Measure

$$\Delta = \frac{\chi_{r=0.3R}}{\chi_{tot}}$$

- Fast Slow contraction models clearly separated for: CO, HCO⁺, CO₂,
 NO, N₂H⁺
- Model degeneracies for: CN, HCN, NH₃, H₂CO, CH

Interesting Abundance Ratios

Chemical Chronometers?

Tassis, Willacy, Yorke, & Turner 2012, ApJ, 753, 29

Degree of Ionization

$$\chi_e \sim \left(\zeta^{1/2} T^{1/2}\right) n^{-0.6}$$

Tassis, Willacy, Yorke, & Turner 2012, ApJ, 754, 6

The future

- Expand chemistry to include deuterated molecules, 10x reactions
- Advance to higher dimensionality models
- Predictions for line profiles (radiative transfer)
- Make results available online
 @ U. of Crete servers

