Supergiant Stars -Extragalactic Probes of Cosmic Abundances and Distances

Rolf Kudritzki

UNIVERSITY OF HAWAII . INSTITUTE FOR ASTRONOMY

Miguel Urbaneja

in collaboration with

Zach Gazak,

Matt Hosek

Chris Evans

Fabio Bresolin

in collaboration with 🚺

Norbert Przybilla

Wolfgang Gieren Grzegorz Pietrzynski Maria Bergemann

Bertrand Plez

ACDM-universe → metallicity of galaxies depends on their mass metal-rich

M81

metal-medium

NGC 300

metal-poor

Tremonti et al., 2004, ApJ 613, 898

50,000 starforming galaxies with Sloan spectra

Rosetta stone to understand galaxy formation and chemical evolution!

mass-metallicity relationship

Tremonti et al., 2004, ApJ 613, 898

However.

Something must be wrong....

It's based on very simplified emission line analysis....

mass-metallicity relationship

Tremonti et al., 2004, ApJ 613, 898

mass - metallicity relationship

depends crucially on strong line method calibration

supergiant stars will come to rescue !!!!

Blue supergiants - objects in transition

Brightest normal stars at visual light: 10⁵..10⁶ L_{sun} −7 ≥ M_V ≥ −10 mag

 $t_{ev} \sim 10^3$ yrs L, M ~ const.

ideal to determine

- chemical compos.
- abundance grad.
- SF history
- extinction
- extinction laws
 - distances of galaxies

pilot study

2008, ApJ 681, 269

Study of metallicities

Advanced atmosphere models: ~ 10⁶ lines in NLTE NGC300/star21

Spectral window 4497-4607Å

Spectral window 4497-4607Å

_{xi} spectral window 4497-4607Å

Stellar metallicity gradient in NGC300

Extragalactic Stellar Spectroscopy

Stellar vs. HII metallicity gradient

Kudritzki et al., 2008, ApJ 681, 265

supergiants

Excellent agreement between auroral lines and supergiants !!

Auroral lines vs. strong lines calibrations - a horror story !!

Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

A mass-metallicity relationship only from stellar spectroscopy

A mass-metallicity relationship only from stellar spectroscopy

Comparison with HII strong line methods (Kewley & Ellison, 2008)

HII auroral line method -staggered SDSS spectra Andrew & Martini, 2013

Hubble constant uncertainty $\rightarrow \delta w = \delta H_0$

despite enormous effort still: $\delta H_0 \sim 10\% \rightarrow \delta w \sim 0.2$

compare Freedman et al., 2001 Saha et al., 2001, Sandage et al., 2006 Mould & Sakai, 2008, 2009ab Riess et al., 2009, 2011, 2012 $\rightarrow \delta H_0 \sim 3\%$ The perennial problem of extragalactic distances

patchy dust extinction

metal-poor

metal-rich

metallicity dependence of distance indicators

Flux weighted Gravity - Luminosity Relationship (FGLR)

Kudritzki, Bresolin, Przybilla, ApJ Letters, 582, L83 (2003)

Balmer series fitting: $\log g = 1.55 \pm 0.1$

A supergiant SED

Kudritzki, Urbaneja & Bresolin

et al. 2008

E(B-V) distribution in NGC 300

B&A supergiants in M33 - reddening

Vivian U, Urbaneja, Kudritzki, Jacobs, Bresolin, 2009, ApJ 740, 1120

M81 extinction

Distance too large

HST Key Project

Freedman et al.

Adopted by

1994

Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15 M81 FGLR

NGC 3109 FGLR

NGC3109 distances

NGC 3109 & WLM FGLR two metal poor LG galaxies

FGLR all galaxies

Hosek, Kudritzki, Bresolin et al., 2013, ApJ subm.

NGC 4258 7±0.2 Mpc "Maser Galaxy"

+ Cepheids in NGC 4258

Operating at 4,200 m

+ Cepheids in NGC 4258

Keck/LRIS slit 6 1.2" wide

HST ACS BVI

stellar metallicity

stellar metallicity

***** BSG in NGC 4258

FGLR of NGC 4258 BSG

galaxies in the works

BSGs and TMT/ELT perspectives

WFOS \rightarrow quantitative spectroscopy possible down to $m_v \sim 24.5$ mag

 \rightarrow with objects $M_V \leq -8$ mag

m - M ~ 32.5 mag ~ 30 Mpc possible

chemical evolution studies SF ISM, extinction, extinction laws distances 10 objects per galaxy $\rightarrow \Delta(m-M) \sim 0.1 \text{ mag}$ Brightest stars at infrared light: $-8 \ge M_J \ge -11$ mag

 \mathbf{m}

201

ens

Advantage: AO supported MOS possible

Problems at H- and K-band: forest of molecular lines →high res. spectra needed

→ even with E-ELT no chance beyond Local Group

Advantage of J-band: atomic lines dominate →medium res. spectra ok

→ enormous potential with Keck/VLT, TMT/E-ELT beyond Local Group

RSG - SED: T_{eff} = 3400K

MARCS model atmosphere, Gustafsson et al., 2008; Plez, 2011

lambda (micron)

RSG: low res J-band spectrum

Mauna Kea IRTF/SpeX

Davies, Kudritzki, Figer, 2010 MNRAS, 407,1203

Davies, Kudritzki, Figer, 2010 MNRAS, 407,1203

Mal Fel ᡃᠬᡌᠬᡅ᠊ᡏ᠋ᠿᢧᠻᡆᢊᡆᡗᢑᡘᢦᠬᡐᡗᠲᡟᡐ᠋ᢐᡗᡐ᠋ᢧᡅ᠊᠋ᠬᢦ᠊ᠺᡀᢂ᠆ᡎ᠆᠂ᢧᠶ 6 <u>֎֎ֈ֎֎ֈ֎֎ֈ֎֎ֈ֎֎֎֎</u> իվ, ունկնատուն 2 ዄ፟ዀዀዀ ᠂ᢦ᠊᠈ᡁᠾᠺᢍᠬᢦ᠂ᢧ᠉᠆ᢦ᠈ᡁᡘᢦ᠆ᡁᢦ᠆ 1.16 1.18 1.20 1.22 Wavelength (um)

+ offset

Normalized flux

SPEX, R=2500

Apply Kudritzki et al.2008 low resolution technique

T_{eff} accurate to ± 150 K Log Z ± 0.15 dex

Davies, Kudritzki, Figer, 2010 MNRAS, 407,1203

Road-testing phase

XSHOOTER (VLT instrument)

Galaxy (Solar metallicity)

Large Magellanic Cloud (0.4x Solar)

Small Magellanic Cloud (0.2x Solar)

Per OB-1 Spectral fits → [Z]=-0.1±0.1

Subaru/IRCS

Gazak, Davies, Kudritzki et al., 2013

$SMC \rightarrow [Z]=-0.6\pm0.1$

VLT/XSHOOTER

RSG spectroscopy beyond Local Group

the potential of

MOSFIRE @ Keck KMOS @ VLT

NGC 300 - 2 Mpc

NGC 300

CMD (HST ACS) one out of 6 fields Bresolin et al. (2005)

Keck/MOSFIRE and VLT/KMOS

$$[Z] \pm 0.1 \text{ dex down to } J = 19.5^{m}$$

TRGB:
$$M_J = -5^m \longrightarrow m - M = 24.5^m$$
 or $d = 0.8$ Mpc

RSG:
$$-8^{m} \ge M_{J} \ge -11^{m}$$

 $27.5^{m} \le m-M \le 30.5^{m}$
 $3.2 \text{ Mpc} \le d \le 12.6 \text{ Mpc}$

Athens 2013

EAGLE @ E-ELT

simulated EAGLE observations: 10h exposure

RSG J-band spectra in Virgo with S/N ~ 200 in 1 night E-ELT

simulated EAGLE observations: 10h exposure

A&A, 527, 50

S/N

perfect recovery of metallicity!!!!

J-band magnitude

Potential: E-ELT and EAGLE

[Z] \pm 0.1 dex down to J =24^m

Super Star Clusters (SSCs)

M82: McCrady & Graham 2007

Dense aggregates of young massive stars in star forming/merging galaxies (Review by Portegies Zwart et al., 2010, ARAA 48, 431)

M ~ 10⁵ ... 10⁶ M_{sun}

Super Star Clusters (SSCs)

M51 Bastian et al. 2005

Gazak, Bastian, Kudritzki et al. 2013, MNRAS Letters, 430,35

J-band population synthesis

10⁵ M_{sun} cluster

RSG contribution to J-band flux is 95%

Number of RSGs ~ 50 RSGs dominate J-band!!! SSC J-band low res

ideal for metallicity!!!!!

HST photometry of M83 SSCs dramatic change of IR-color with age

Gazak, Bastian, Kudritzki et al., 2013

SSC in M83

Proof of concept: 3h VLT/ISAAC, J- band

[Z] ~ 0.3

Gazak, Davies, Kudritzki et al., in prep.

SSC 1447 in NGC 6946

Proof of concept: 1 night with IRTF, J- band

 $[Z] = -0.5 \pm 0.15$

Gazak, Davies, Kudritzki et al., in prep.

red supergiants J-band spectroscopy

Brightest stars at infrared light: $-8 \ge M_J \ge -11$ mag

 \bigcirc

201,

galaxies out to 4Mpc mumber of observable targets ~100

E-ELT: galaxies out to 35Mpc (modest...)
 number of observable targets increased to ~1500!!