

Statistical analysis of ALFALFA galaxies: insights in galaxy formation & near-field cosmology

Manolis Papastergis NOVA postdoctoral fellow Kapteyn Institute/University of Groningen

2013 Hel.A.S. Conference Athens, 10 September 2013

Statistical analysis of ALFALFA galaxies: insights in galaxy formation & near-field cosmology

Manolis Papastergis NOVA postdoctoral fellow Kapteyn Institute/University of Groningen

2013 Hel.A.S. Conference Athens, 10 September 2013

Cornell University

Statistical analysis of ALFAL insights in galaxy for cosm

Riccardo Giovanelli ies: field

Martha Haynes

Manolis Papastergis NOVA postdoctoral fellow Kapteyn Institute/University of Groningen

2013 Hel.A.S. Conference Athens, 10 September 2013

- ALFALFA is a *21-cm* survey of *local galaxies*, done with the *Arecibo* radiotelescope (PI: R. Giovanelli, Cornell).
- ALFALFA is a *blind* survey, and detects galaxies based on their *atomic hydrogen (HI)* content.
- So far, it has detected 15 000+ sources, producing the *largest HI-selected* sample to date.

- ALFALFA:
 - 7 000 sq.deg.
 - *median z ~ 0.025, max z = 0.06*
 - 30 000+ sources
 - volume ~ 0.003 Gpc³

- SDSS:
 - 9 380 sq.deg.
 - median z ~ 0.1, max z ~ 0.3
 - ~ 930 000 spectr. sources
 - volume ~ 0.6 Gpc³

- ALFALFA directly measures three galactic properties:
 - redshift
 - integrated flux (& HI mass)
 - velocity width

- ALFALFA directly measures three galactic properties:
 - redshift
 - integrated flux (& HI mass)
 - velocity width

- ALFALFA directly measures three galactic properties:
 - redshift
 - integrated flux (& HI mass)
 - velocity width

- ALFALFA directly measures three galactic properties:
 - redshift
 - integrated flux (& HI mass)
 - velocity width
 - for most exgal sources, ALFALFA cannot measure spatially-resolved properties:
 - size, shape, inclination, rotation curve

galaxy formation & evolution

based on:

"A direct measurement of the baryonic mass function of galaxies & implications for the galactic baryon fraction", Papastergis E., Cattaneo A., Huang S., Giovanelli R., Haynes M.P., *ApJ*, 759, 138 (2012)

"The clustering of ALFALFA galaxies: dependence on HI mass, relationship to optical samples & clues on host halo properties", Papastergis E., Giovanelli R., Haynes M.P., Rodriguez Puebla A., Michael G. Jones accepted by ApJ (arXiv: 1308.2661)

galaxy-halo connection

M83 galaxy

(Diemand+ 2007)

Establishing a **connection** between observed galaxies and dark ٠ matter halos is the **key** to understanding galaxy formation.

baryonic contents of galaxies

baryonic contents of galaxies

baryonic mass function

stellar content of galaxies

stellar mass fraction vs. halo mass

no galaxy turns its **"share"** of baryons into **stars**.

MilkyWay-size galaxies are the *most efficient*, with stellar conversion efficiency of **30%**.

baryonic content of galaxies

baryonic mass fraction vs. halo mass

 Low mass halos are severely baryon depleted, even when atomic gas content is taken into account

baryonic content of galaxies

baryonic mass fraction vs. halo mass

 Low mass halos are severely baryon depleted, even when atomic gas content is taken into account

galactic feedback

baryonic mass fraction vs. halo mass

• In low mass halos,

expelled gas mass = 100 x stellar mass

galactic feedback

galactic feedback in hydro simulations

the era of cosmological HI surveys

Wallaby survey virtual sample

credit: Alan Duffy (ICRAR)

- Near-future HI surveys
 - Wallaby (ASKAP, Australia)
 - WNSHS (WSRT, Netherlands)
 - FAST (China)
- Will measure
 >500 000 galaxy redshifts

advanced galaxy modeling & cosmology

we predict this...

Dalal+ (2008)

... but we measure this

A **detailed model** of the galaxy-halo connection is necessary for using **galaxy surveys** for **cosmology**

galaxy clustering

galaxy clustering

galaxy clustering

dependence of clustering on mass

 Λ CDM halos

ALFALFA galaxies

• HI mass is **not tightly** related to host halo mass

$M_{HI} - M_{halo}$ relation

$M_{HI} - M_{halo}$ relation

M_{HI} – M_{halo} relation

- In conclusion:
 - The M_{HI} M_{halo} relation has **large scatter**
 - Not all, but some subhalos host HI galaxies

near-field cosmology

based on:

"The Velocity Width Function of Galaxies from the 40% ALFALFA Survey: Shedding Light on the Cold Dark Matter Overabundance Problem", Papastergis E., Martin A.M., Giovanelli R., Haynes M.P., ApJ, 739, 38 (2011)

HI cosmology with ALFALFA

Klypin+ (2011) "Bolshoi simulation"

Lovell+ (2012)

HI cosmology with ALFALFA

Lovell+ (2012)

Klypin+ (2011) "Bolshoi simulation"

HI cosmology with ALFALFA

 The velocity width of a galaxy is a direct indicator of dynamical mass.

the ALFALFA velocity width function

• "shallow" low-velocity slope, $\alpha = -0.85$

the ALFALFA velocity width function

dark matter only rotation curve add baryons Stellar mass of the galaxy $\log \eta_{reio}$ $\log M_{\rm bary}/M_h/f_b$

Gas mass of the galaxy

Adiabatic contraction?

HI disk extent

observation vs. theory

 the theoretical and observational distributions *disagree at low widths* (w < 100 km/s).

 a factor of 8 at w=50 km/s, a factor of ~100 at w=20 km/s.

observation vs. theory

 the theoretical and observational distributions *disagree at low widths* (w < 100 km/s).

 a factor of 8 at w=50 km/s, a factor of ~100 at w=20 km/s.

(modeling: Trujillo-Gomez+ 2011, Zavala+ 2009)

Warm Dark Matter ?

 in WDM universe number of low-mass halos suppressed.

Warm Dark Matter ?

rotation curve shape?

• *rotation curves* in dwarf galaxies are often *rising* to the last measured point.

'flat' rotation curve

rotation curve shape?

 for dwarfs, *HI velocities* may systematically
 underestimate true
 halo masses.

v_{rot} – v_{halo} relation in CDM universe

v_{rot} – v_{halo} relation in CDM universe

v_{rot} – v_{halo} relation in CDM universe

Warm dark matter or baryonic physics?

placing data for *individual galaxies* on the $v_{rot} - v_{halo}$ diagram, can distinguish between *alternative dark matter* and *baryonic effects*.

thank you for your attention!

questions?