P2(-0.5,0,0)

The Copenhagen problem with a quasi-homogeneous potential

D.Gn. Fakis and T.J. Kalvouridis Department of Mechanics, NTUA, Greece

Abstract: We study the Copenhagen case of the RTBP by considering Manev-type quasi-homogeneous potentials.

1 The equations of motion and the zero-velocity curves (zvc) and surfaces (zvs) for the planar motion

The dimensionless equations of motion, in a synodic Cartesian coordinate system Oxyz (Fig.1), with $\omega = 1$, are:

$$\ddot{x} - 2\dot{y} = \frac{\partial U}{\partial x} = U_x, \ \ddot{y} + 2\dot{x} = \frac{\partial U}{\partial y} = U_y, \ \ddot{z} = \frac{\partial U}{\partial z} = U_z$$
(1)

$$U(x, y, z) = \frac{1}{2} \left(x^2 + y^2 \right) + \frac{1}{\Delta} \left[\sum_{i=1}^2 \left(\frac{1}{r_i} + \frac{e}{r_i^2} \right) \right]$$
(2)

where e is Manev parameter, $r_1 = [(x - 0.5)^2 + y^2 + z^2]^{1/2}$, $r_2 = [(x + 0.5)^2 + y^2 + z^2]^{1/2}$, and $\Delta = 2(1 + 2e) > 0$.

The last condition is satisfied when e > -0.5. There is a Jacobian-type integral of motion $\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = 2U(x, y, z) - C$ where C is a constant. When e < 0, a "folding" of the chimney-like zvs C = C(x, y) around each primary, starts to form. As a consequence, a closed area of non permitted motion in the vicinity of each primary is created (Fig.2).

Figure 2: The C = C(x, y) surface (left) and the detail of its "folding" (right) for e = -0.08

2 Focal curves and equilibrium positions

P1(0.5,0,0)

Figure 1

We use the term "focal curve" to denote the existing common intersection curve of all C = C(x, y) surfaces drawn for various values of e. This curve is shown in Fig.3(b).

Figure 3: (a) Diagrams xC for various values of e and y = 0 and the focal points, (b) the 3d focal curve as it evolves around zero-velocity surface in xyC space

Regarding the equilibrium points, when e > 0, the existing equilibria are the same as in the gravitational case. However, when -0.5 < e < 0, new equilibria appear (Fig.4). In Table 1 we give the data assigned to these points.

Equilibria	Axis or	Number of	Range of e	Stability
6.6	x-axis	2	e>-0.1955	Unstable
L ₂	x-axis	1	e>-0.5	Unstable
L4 , L5	x-axis	2	e>-0.5	Unstable
E_1 , E_4	x-axis	2	-0.1955 <e<0< td=""><td>Unstable</td></e<0<>	Unstable
E_2 , E_3	x-axis	2	-0.1820 <e<0< td=""><td>Unstable</td></e<0<>	Unstable
L _{×v}	xy-plane	4	-0.5 <e<0< td=""><td>Unstable</td></e<0<>	Unstable
L _{xz}	xz-plane	4	-0.5 <e<0< td=""><td>Unstable</td></e<0<>	Unstable
Lv	y-axis	2	-0.5 <e<-0.23< td=""><td>Unstable</td></e<-0.23<>	Unstable
Lis Las	z-axis	2	-0.5 <e<-0.25< td=""><td>Unstable</td></e<-0.25<>	Unstable

Table 1

Figure 4: Distribution of the existing equilibria for e > -0.23

3 Zero velocity surfaces (zvs) for the 3D motion

In Fig.5 we depict some phases of the evolution of the zvs when $C \ge C_{Lxz}$. We note that bifurcations in the topology of the zvs occur when $C = C_j$, where C_j is the Jacobian of an existing equilibrium.

Figure 5: The zvs for e = -0.14 and:(a) C = 3.769, (b) C = 3.138, (c) C = 2

References

- Fakis, D.Gn., Kalvouridis, T.J.: Dynamics of a small body in a Maxwell ring-type N-body system with a spheroid central body. Cel. Mech.Dyn.Astron. 116 (2013) No 3, 229-240.
- [2] Fakis, D.Gn.: Numerical investigation of the dynamics of a small body in a Maxwell ring-type Nbody system where the central primary creates a Manev-type post-Newtonian potential field. Doctoral Thesis, 2014, pp.1-667, NTUA.