

The Forecasting Solar Particle Events and Flares (FORSPEF) Tool

A. Anastasiadis¹, I. Sandberg¹, A. Papaioannou¹, M. K. Georgoulis², K. Tziotziou¹, G. Tsiropoula¹, D. Paronis¹, P. Jiggens³, A. Hilgers³

¹IAASARS, National Observatory of Athens, Greece

²Academy of Athens, Research Center for Astronomy and Applied Mathematics, Greece

³European Space Agency, European Research and Technology Center, The Netherlands

Background

Solar Energetic Particle (SEP) events

Desai and Burgess, 2008

Background

How to forecast Solar flares and SEP events ?

Machine learning (Qahwaji & Colak 2007)

Statistical methods (Wheatland, 2001)

Morphological methods (Georgoulis, 2013)

PPS (Shea & Smart, 1989) PROTONS (Balch, 1999; 2008) RELEASE (Posner, 2007) Laurenza's method (Laurenza, 2009) UMASEP (Nunez, 2011) COMESEP (comesep.eu, 2013) Probability of Occurrence Prediction of the max. flux Projected CME char.

Probability of Occurrence Prediction of the max. flux SEP Flux profile

Outputs

Inputs

Solar Flares

Solar Particle Events

Solar Flares (& Projected CME) Forecasting

> The Solar Flare Prediction will rely primarily on the "effective connected magnetic field strength" (B_{eff}) prediction metric

Georgoulis & Rust, 2007; Gerogoulis, 2008; Tziotziou et al., 2012; 2013

Solar Flares (& Projected CME) Forecasting

> Flare & (Projected) CME prob.

A pictorial output of the range of probabilities for different flare classes (**red histogram**). Also shown is the respective CME likelihood curve (**blue histogram**).

SEP Forecasting & Nowcasting

> Given specific solar parameters (flare mag, CME width, velocity) identify the probability that an SEP event will occur

> Given a subset of flares and CMEs that do produce SEP events, how do the characteristics of the SEP event relate to those of the parent solar event?

SEP Forecasting & Nowcasting

2

Soft X-Ra	lar Flar	e Start	Solar Flare Peak Time					SEP Start Time						
1985	4	24	9	14	1985	4	24	9	22	1985	4	24	11	
1985	7	9	1	26	1985	7	9	2	4	1985	7	9	2	1
1986	2	4	7	35	1986	2	4	7	40	1986	2	4	9	1
1986	2	5	12	37	1986	2	5	12	53	1986	2	5	2	
1986	2	6	6	18	1986	2	6	6	25	1986	2	6	8	
1986	2	7	10	11	1986	2	7	10	29	1986	2	7	13	
4000	0	40	0 0	00	4000	0	40	00	40	4000	0	40	04	

> The FORSPEF SEP database
 includes 314 SEP events, 20459 SFs
 (≥ C1.0) (from 1984-2013) and
 3680 CMEs (from 1997 to 2013).

CME

Sandberg et al., 2014; Papaioannou et al., 2015a

6 Indicators: Flares: flux, longitude, rise time, duration / CMEs: velocity, width;
2 Physical quantities: peak flux, fluence
4 Energy ranges: > 10; > 30; > 60; > 100 MeV

Forecasting mode

Actual Work Scheme

Forecasting mode

Nowcasting mode

Nowcasting mode

> SEP Nowcasting, offers

- For a given SF, **30 historical SEP events** from the FORSPEF database, closest in terms of the **flare longitude** and within *one order of magnitude* in **the flare flux** are chosen.

- All SEP characteristics are calculated on the basis of this SEP events sub sample.

> SEP Nowcasting, offers

- Probability of SEP occurrence for a given SF

- The expected SEP characteristics

Results

Outputs of the system

Results

Outputs of the system

>SEP Nowcasting

IllustrationsofthederivedSEPcharacteristicsforgiven flare.

Conclusions

> The FORSPEF system

> Incorporates a novel method for the solar flare prediction and a new database of SEP events, solar flares and CMEs.

> Provides forecasting of SEPs based on solar flare & projected CME characteristics (e.g. speed)

> Offers a **24-hour** forecast of SEP events, **up to 70° EW** covering practically the entire course of the AR toward the limb (up to ~85°), under the assumption that the AR does not change significantly over this course.

> FORSPEF has been released in April 2015 / info @ http://tromos.space.noa.gr/forspef

Thank you

Acknowledgments: The research leading to these results has received funding from the European Space Agency, ESA Contract No. 4000109641/13/NL/AK

Back-up slides

The SOHO/MDI database

Solar Flares (& Projected CME) Forecasting

Georgoulis, 2015

The FORSPEF system | Using CMEs

Nowcasting mode

Statistical analysis | Solar Flares

> X-ray flare flux versus flare longitude. The flares associated with SEP events are presented by the filled black circles and all other (non SEP flares) by the open red circles

> Belov et al., 2005 Papaioannou et al., 2015a

Statistical analysis | Solar Flares

> Distribution of solar flare latitude (in degrees) as a function of the flare longitude (in degrees) .The flares associated with SEP events are presented by the filled black circles and all other (non SEP flares) by the open red circles

Papaioannou et al., 2015a

Statistical analysis I CMEs

Statistical analysis I CMEs

