University of Kent

Survival of the impactor during hypervelocity collisions: an analogue for low porosity targets

Chrysa Avdellidou

Impact Group Centre for Astrophysics and Planetary Science University of Kent, UK

Collaborators in the project:

<u>Marco Delbo'</u> Observatoire de la Cote d'Azur, France

> <u>Mark Price</u> University of Kent, UK

<u>Mike Cole</u> engineer, University of Kent, UK

<u>Panos Ioannidis</u> Hamburg Observatory, Germany

Laboratory Impact Experiments:

The problem:

Dark material on Vesta McCord+2012 Reddy+ 2012

Black Boulder on (25143) Itokawa Hirata & Ishiguro,2011 Impactor contamination is suggested to be a possible explanation of the origin of dark materials on several asteroids.

2008 TC3

Jenniskens+ 2009 Bischoff+ 2010

Gayon-Markt+ 2012

2008 TC3

✓ discovered 19h prior to its entry

 \checkmark disrupted high in the atmosphere

✓ found 700 meteorites

✓ very diverse lithology

loosely bound material

We will try to show that impactors material survives at higher collisional speeds!

Project:

:> for different combinations of materials:

... for several impact speeds:

- ... Estimate the projectile's mass which is embedded on the crater.
- ... Measure the **size** distributions of the projectile's fragments that escaped.
- ... Examine the state of the largest survived fragments.

Shots summary:

materials target: low porosity (<10%) water-ice (-50C)
projectiles: 3 mm Mg-rich peridot (Forsterite olivine ((Mg,Fe)₂SiO₄))
2-2.4 mm synthetic basalt spheres</pre>

speeds 0.378 - 3.5 km/s

Ve have fired 11 successful shots.

✓ We recovered relative large fragments for 9 of them.

Instruments:

2 stage Light-Gas Gun

/ horizontal gun
/ several targets
/ projectiles: dust, glass,
 metals, rocks, ice and any
 living creature does not have
 a spine!
/ speed < 7.5 km/s
/ vertical component soon!</pre>

Analysis: [From shots to maps]

Analysis: [From maps to distributions]

SEM-EDX

SEM and X-rays (EDX) provide light images and elementary maps of each field of view. Fragments are blended with carbon, sand or iron from the gun we use only the Mg-maps to identify the olivine pieces.

Analysis:

[From maps to distributions]

Still the fragments are uncountable!!!

SExtractor

- → Consider fragments as light sources.
- → Apply astronomical photometry by choosing a desirable threshold above BG noise and a threshold in pxl to set the min detectable area.
- → Use ISO aperture able to identify irregular shapes.

Analysis: [From maps to distributions]

Maps have a limited resolution.
Pxl scale: 0.4microns/pxl.

Analysis: [From maps to distributions]

SExtractor

Analysis: [State of the large fragments – shock]

RAMAN

✓ Gives the shifts of lines.

- ✓ Measure the shift from the reference peaks (P1-Pref, P2-Pref).
- ✓ Measure the mutual difference of P1-P2.
- ✓ We can understand if the geometry of molecules has been changed.

Analysis: [State of the large fragments – shock]

Hydrocode modelling

Olivine	speed	Р	Τ	Т	M	speed	Р	Τ	Т	Μ	
	[km/s]	[GPa]	[K]	[K]	[%]	[km/s]	[GPa]	[K]	[K]	[%]	····
	0.38	0.54	301	293	100	1.49	0.8	360	307	77.4	
	0.60	1.21	298	293	86.2	1.68	1.0	401	302	70.9	
	0.92	1.64	297	294	65.5	2.07	1.29	433	303	63.2	
	1.33	2.84	302	295	29.5	2.14	1.32	436	303	66.3	
	1.60	3.75	312	296	19.3	2.17	1.33	440	303	77.0	
	1.95	4.83	330	297	7.8	2.70	2.97	463	308	5.4	
	2.00	4.94	331	297	13.4	3.03	4.58	522	317	1.3	
	2.05	5.06	342	297	3.2						
	2.16	5.59	335	298	2.9						
	2.71	7.13	397	299	0.02						
	2.97	8.04	407	305	_						
	3.50	10.20	513	353	_						

Analysis: [State of the large fragments – mass]

Q is the energy density [J/kg] in the impact.

Analysis: [Implantation in the target]

Current experiments:

-Repeat the project using higher porosity water-ice targets ($\sim40\%$).

Future experiments:

- Repeat using peridot fired onto a rock. We need a pure rock without contamination of other materials. This is difficult with natural rocks.
 - A possible candidate is Icelandic crystal. It does not leave residues when dissolved.
- → Fire onto regolith-like surfaces.

Conclusions:

- \rightarrow No melt or alteration of the survived fragments.
- Hydrocode modelling in agreement with Raman results.
- \rightarrow Olivine does not show the fragmentation we expected.
- → Q plots can give the catastrophic disruption energy density, Q*.
- Automated way to measure quickly ad accurately the fragments.

