Particle acceleration and heating in regions
of magnetic flux emergence: a statistical
approach using test-particle- and MHD-

simulations



Outline

3D nonlinear MHD simulations of an emerging
flux tube,
from convection zone into the corona
(Vasilis Archontis):

In this study:
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* Focus on the coronal part

e Spatial structure and statistics of the
electric field and other MHD quantities

Test-particle simulations (electrons):
- heating
- acceleration

e Particular aim of this project also is to investigate the relation of the
acceleration mechanism to Fermi acceleration and Fokker-Planck modeling
- determine transport coefficients



MHD simulations: reconnection and standard jet

e MHD snapshots of emerging flux tube, reconnecting with pre-existing

ambient coronal field:
- ‘standard’ jet is formed, which is triggered by the eruption of dense and

cool plasma from the emerging flux region
- turbulence on small scales




Spatial structure of the magnetic and electric field

* Snapshot 30, standard outflow jet:

 We concentrate on parallel el. field since it is dominantly responsible for
acceleration, see later

» Parallel electric field shows fragmented structures,
and has preferred regions of pos. and neg. sign
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* Fragmentation needs to be quantified: cluster analysis, fractal dimension



Cluster analysis of parallel electric field

Cluster defined as grid-sites with above-threshold electric field, connected through

nearest neighborhood
Similar to 3D iso-contour-plot, but identifies not connected regions

Free parameter: threshold 0.07, will be justified later

iso-contours cluster analysis
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- Cluster-size distribution
— fractal dimension of cluster distribution



Cluster-size distribution, fractal dimension
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e Cluster-size distribution,
here size = number of
grid-points a cluster consists of, |
times elementary grid-volume:
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box-counting method in 3D: i
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Statistics of the electric field

Histogram of the magnitude of the total,
parallel, and perp. electric field

Parallel el. field 100 times smaller than
perpendicular one,
power-law tail, index 1.6

Mean Dreicer field E, =5 x 104 V/m

Perp. el. field clearly super-Dreicer,
parallel el. field super-Dreicer only at a
fraction of the grid-points

10’

probability density

e
o o o
LW

—
=
[

[
[=] (=]
— i

s 5
= =

Dreicer field

2l|le—e |E
|| E,
v+ power-law fit; index = -1.91
[ a—a |

| == power-law fit: index = -1.55

threshald

10" i
w0 1t

:
1010

10" 10® 10! 10°

electric field [V/m]

Threshold for iso-contours, clusters, and fractal dimesion: 140 E
- region of clearly super-Dreicer parallel el. Field.



Statistical analysis of MHD data: Energies

Perpendicular dynamics expected to be dominated by E cross B drift:
expected energetics

E\in ecs= (1/2) m, (E cross B-velocity)?
histogram of E,; from all grid-sites:
- power-law, index 1.3, yet maximum energy very small: 0.1 keV
- we would expect perpendicular energization to be negligible
(note: no test particles were run for this result)
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Statistical analysis of MHD data: Energies

* Distribution of the parallel electric energy:
WE||:(1/2) €9 E||2 10—
Very extended double power-law, 0 [
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—> various power-law distributions already in MHD data !
- MHD simulation highly non-linear, far from equilibrium



Test-particle simulations: the equations of motions

Direct, non-linear test-particle simulations, in 3D geometry:
MHD fields are interpolated locally with 3D, continuous cubic polynomials

15t order relativistic guiding center approximation

) b=B/B
du” o q . ﬁ e E*f=E — @uu(‘}_b A
= 'mngﬁB (Q",HVB E) q ot u =9V
) . o B 1
(Tao, Chan,& Brizard (2007), Grebogi & Littlejohn (1984) ~= Vi (o)

Benchmarked by comparing to integrating Lorentz force
dr/dt =v, du/dt=(g/m)(vxB +E)
=>» Very good coincidence is found

Important: parallel electric field has to be interpolated explicitly, else
artificial fields are generated !

In any case, numerical integration with 4% order Runge Kutta, adaptive
time-step scheme (version of Dormand Prince)

The code has been parallelized with OpenMP and with MPI



Test-particle simulations: the set-up

The electric and magnetic field are de-normalized to SI units and
not further scaled.

Mostly 100’000 to 500’000 electrons are traced, and intermediate and the
final kinetic energy distribution is calculated

Final integration time mostly is 0.1 sec:
MHD time-step = 25 sec, so particles evolve in fixed MHD snap-shots

the initial velocity is random Maxwellian, with temperature = 9x10°K

initial position is uniformly random
in a box in the central region
around the main reconnection
regions




Standard jet: results at 0.1s

The final energy distribution at 0.1s is of Maxwellian shape at the low
energies, and exhibits a double power-law tail

Acceleration:

The maximum energy reached is about 2 MeV, and a power-law fit to

the tail yields an index of about 1.30 at the lower energies and 1.76 at the

higher energies.

13% of the 100’000 particle have
left leave at 0.1 s, and they have
energies in the same range than
those that stay inside,

with a modulated power-law tail
that is steeper though,

with index 2.72 at the

highest energies.
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Standard jet: results at 0.1s

Acceleration, cont’d:

* final total, parallel, and perpendicular kinetic energy at 0.1 s:
- the power-law tail in the total kinetic energy stems from the parallel
kinetic energy,
- essentially no energization in the perpendicular direction,

important conclusion:
acceleration is acting
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Standard jet: results at 0.
Heating:
particles that stay inside: °
* Maxwellian shape of the energy ol
distribution at low energies: 07 |
heating from the initial 0.24 keV to 0.50 keV ;
(1.8MK) D~
 Temperature as a function of time increases ¢ f| +1
linearly until 0.05 s and then starts to turn
over, reaches a peak value of 0.50 keV at0.1s ™’

leaving particles at low energies:
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= power-law fit: index = -1.76
power-law fit: index = -1.30
- power-law fit: index = -2.72

= Maxwellian fit: T= 13.299 [keV]

distribution reminiscent of a Maxwellian,
temperature of about 13.3 keV:

—> super-hot population of 50 MK.

(the statistics is not very good)

It is to note though that the energies
are collected at different times for
each particle.
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Standard jet: results at 1.0s

Longer times: 1.0 s

57% of the particles have left the system.

Still power-law tail, no clear scaling anymore at higher energies

(poor statistics due leaving particles)

highest energy reached 20 MeV (2MeV at 0.1s).

Heating to a temperature of 0.4 keV (0.5 keV at 0.1s),
leaving particles: power-law tail similar as at 0.1 s,

low energy part is closer to Maxwellian shape (T = 7.5 keV (28 MK))
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Standard jet: results at 0.1s

The effect of collisions:

collisions with background electrons of the same T as the initial T of the
test-particles.

Collisions play a role at low energies only,

as expected, cooling down the electrons

With collisions: T =0.38 keV,
without collisions: T = 0.50 keV.
cooling down = heating of the background
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Orbits of 40 randomly chosen particles:

orbits of the 40 most energetic particles:

Standard jet: results at 0.1s

shows population that is heated or
moderately accelerated

clear preference in initial conditions:
close to strong pos. and neg. parallel el. field.

particles move some distance along E-field
pass then through it at some point,
whereby their energy increases strongly

Chosen threshold in parallel electric field
out-lines region of most efficient acceleration
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Diffusion coefficients: the connection to Fermi acceleration and
Fokker-Planck description

 The Fokker-Planck equation (FPE) in velocity space writes as
of/ot=V, [-D -V, f+Ff]
and in cylindrical coordinates u = (u,, u,,) it takes the form

af 1 0 af af
— = —— -D,,——-D,—+F
8t ulé‘ulul |: ll@uL J_”{91&” T J_f]
0 af af
— | =Dy 1=— — Dy =— + Fj
T 5 [ 145y, ~ Piligy, ||f]
 Time-dependent, velocity-space
averaged transport coefficients, B 1 B
where the average is over the Dyy(t) = 2 tren — tr) ((wy(Ern) — ) (8:)))*)
sample of the test-particles,
* Note, we use running estimate, Fo(t,) — 1 p — (4
at predefined monitoring times t, 1(t) (tkwn — tk) o (i) = 2 (t))))

(Ragwitz and Kantz, PRL, 2001)

— seems a detail, but turned out to be important

(e.g. when trying to reproduce the results of a classical random walk with the
numerical solution of the FPE)



Time-dependent, velocity-space averaged transport coefficients

* Parallel diffusion/convection clearly dominates
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* Yet, this picture is too simple, we have to consider the velocity
dependence



Time- and velocity-space-dependent transport coefficients

An estimate of the velocity-space- and time-dependence of the transport
coefficients, for given time t,, can be made by

- first prescribing 2D bins in the u, - u|, - plane, with mid-points (v ,u| ),

- and then,, considering [(u", (t,,,) - u"| (t))*] a function of (u, ,u,, ) if
(u (t), ut,,(t,)) lies in the respective bin (i,j)
for each particle, indexed with /,

- and do binned statistics to find the mean values such as

1 1) (1 2
Dy (ks vz, uyy) = o —10) <(“(| (trtn) — “||)(f»k)) >E (tk, wi i wy,5)

and the like for the other transport coefficients

D, t=0.00100 F,, t=0.00100

Quite noisy, nonetheless with

218

clear structure in parallel s 1s 2
direction:
— we can neglect the X

dependenceon u, !




Time- and v| -dependent transport coefficients

 Diffusion coefficient: We ignore the dependence on u;

Dy (e, wyi) = Q(tml_ ) <(Uff)(‘~‘k+n) - uf”(h:))2>I (tr, w1.5)

binned statistics parabolic fit

D, D, parabolic fit in v

0.08
0.10—1.5

 Some noise, yet parabolic fit seems reasonable, above all at small times

Dyt uy, uy) o uff g(t)



Time- and v| -dependent transport coefficients

Convective coefficient: We again ignore the dependence on u,

- o (0 - ), o

Ejyp (tew5) = (tern — )

binned statistics linear fit
FH, linear fit in u

lell

lell

Again, there is a lot of noise, yet the linear fit seems more or less reasonable at
Fyj(t,ur, w)) = v g(t)

small times

Dy, , F|,: Basic dynamic acceleration takes place up to 0.02sec,
=>» particles have taken the energy that is available for them
=>» there is a kind of saturation effect



Summary

e The MHD simulations yield various power-law distributions, and fractal
structures, they are far from equilibrium

* For the test-particles, we find acceleration and heating.
Both are a transient phenomenon, there is a kind of saturation effect

* Leaving particles form super-hot population, with power-law tail in energy
* The parallel dynamics clearly dominate the energetics

e transport coefficient are velocity-dependent, and seem to have simple
functional form

Future steps:
 How are the various power-law indices related ?

* Analyze different MHD snapshots,
e.g. with ‘blowout jet’

e Spatial structure of E-field needs
still to be further analyzed:
e.g. Eulerian vs Lagrangian
correlation. -0.0500

= ~=-0,0700

-0,0300




THE PRESENTATION ENDS HERE



Standard jet: results at 0.1s

thick target HXR emission spectrum

The HXR spectrum is rather flat,

with index mostly close to 1.2.

HXR spectrum of the leaving particles is
very similar in shape

(asynchronous distribution !)

the time evolution of the power-law
index of the spectrum.
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Time- and velocity-space-dependent transport coefficients

Parallel diffusion coefficient D,
= old result: D |, prop.tov,?

=>» clearly velocity dependent D, no obvious functional form, though
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Time- and velocity-space-dependent transport coefficients

Parallel convective coefficient F
— old result F, prop to v,

=>» again: much less clear functional form now
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Correct form of transport coefficients

is the form really correct,

i.e. will =in well behaved cases — the FPE yield the same as do the
test-particle simulations ?

We set up a simple random walk problem in 1D, with given step-size
distribution for velocity and time, where D| |, can be derived analytically , and
we estimate

D also numerically from the random walk:

The numerical D, || gave distributions clearly different from the random walk

Corrected form of estimator for D,, |, (and the other coefficients):
use running estimate, at predefined monitoring times t,, and define

: V) (b)) — ) (8)))?)

Dint) = 55——15 ((

— numerical solution of FPE and random walk coincide very well !
— seems a detail, but turned out to be important



The most explosive phase: collisions, relativistic effects

Collisions (with background electrons)
play a minor role at low energies

=>» collisions can be neglected
(Monte Carlo collision operator,
Hamamatsu, K et al.,

Plasma Phys Contr Fus 49,

1955 (2007))

We consider the relativistic equations

of guiding center motion, and compare
with the non-relativistic case.

In the relativistic case,

the particles reach higher energies,

in the intermediate to high energy range
though, where a clear power-law is formec
distribution is unaltered.
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The most explosive phase

time ¢=0.0010
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The most explosive phase: longer times

We consider the relativistic equations of guiding center motion,
for final times 0.1s and 0.3

= The distributions are similar in shape,
- at 0.3s the high energy part is less noisy and shows now a clear power-law

kinetic energy distribution

A fit in the range [10,1000] yields L R Rme ne e ot B e i
an index -1.9 oot | FERE Ml 03 et ]
(the fit is though not very good at

the higher energies)
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Before the most explosive phase

We consider the start of the blob formation

a fit in the range [0.4,80] yields a slope 1.2,
i.e. the distribution is steeper (1.2 vs 0.6) in lesser developed turbulence,
there seems to be less heating taking place at low energies

distribution of Ekin
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Initial, quiet phase

e snapshot 30 is far away from the blob formation,
the coronal part still is rather quiet

* The highest energy reached, 150 keV, is much smaller than in developed
turbulence

e up to 150keV the 4

kinetic energy distribution

distributions are very similar,

. . . . . 0.01 | =
heating is similar in both _
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The most explosive phase: HXR emission

* Assuming that the particles instantaneously would precipitate onto the
lower corona, we calculate the thick target HXR spectrum from the
energy distribution (Brown, Holman)

 HXR emission at three different times:

The HXR spectrum is rather flat (slope 1.2 to 1.4).
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Collisions: benchmark

 We use the Monte Carlo collision operator as described in Hamamatsu, K
et al., Plasma Phys Contr Fus 49, 1955 (2007):
random walk steps super-imposed on deterministic motion,
after time intervals related to the collision time

e Particles collide with a Maxwellian background

 Benchmark: ions colliding 55

with background electrons s
that have 4 times larger i Pipeces
temperature than the ions sb

initially: s ¢

Final ion distribution well = .

coincides with expected distribution, 05 ;K{:xxx

the ions are heated N e LT R M5 563 3¢ M 5 SN
(after 300 sec, .. o

with collision time = 0.3 sec) o 1 2 3 4 5 6 7 8 09
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Spatial structure of the magnetic and electric field (2/2)

* Magnitude of parallel electric field also
fragmented (dominantly responsible for acceleratiom, see later)

0.0962

8.98e-11

* Fragmentation needs to be quantified: cluster analysis, fractal dimension:
work in progress



Summary of older results, presented in loannina

Collisional effects are not import

Relativistic equations of motion should be used (the particles reach higher
energies)

Longer integration times lead to more well formed power-laws

During explosive MHD phases, there is heating and acceleration,
during quiet phases, there is only heating

calculating the thick target HXR spectrum from the we find so-far that
the HXR spectrum is rather flat.

Scaling factor for E is necessary and strongly affects the results



