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Outline 

3D nonlinear MHD simulations of an emerging  
flux tube,   
from convection zone into the corona  
(Vasilis Archontis): 

In this study: 

• Focus on the coronal part 

• Spatial structure and statistics of the  
electric field and other MHD quantities  

Test-particle simulations (electrons): 
- heating 
- acceleration 

• Particular aim of this project also is to investigate the  relation of  the 
acceleration mechanism to Fermi acceleration and Fokker-Planck modeling 
 determine transport coefficients 
 



MHD simulations: reconnection and standard jet 
 

• MHD snapshots of emerging flux tube, reconnecting with pre-existing 
ambient coronal field: 
- ‘standard’ jet is formed, which is triggered by the eruption of dense and 
    cool plasma from the emerging flux region 
- turbulence on small scales 

 



 Spatial structure of the magnetic and electric field  

• Snapshot 30, standard outflow jet: 

• We concentrate on parallel el. field since it is dominantly responsible for 
acceleration, see later 

• Parallel electric field shows fragmented structures,  
and has preferred regions of pos. and neg. sign 

 
                                                                                    parallel el. field 
 
 
 
 
 
 
 
 
 

• Fragmentation needs to be quantified: cluster analysis, fractal dimension 

 

 

magnitude of total el. field 



Cluster analysis of parallel electric field 

Cluster defined as grid-sites with above-threshold electric field, connected through  
nearest neighborhood 
Similar to 3D iso-contour-plot, but identifies not connected regions 
Free parameter: threshold 0.07, will be justified later 
 
              iso-contours                                                    cluster analysis 

 Cluster-size distribution 
 fractal dimension of cluster distribution 



Cluster-size distribution, fractal dimension  

• Cluster-size distribution,  
here size = number of  
grid-points a cluster consists of, 
times elementary grid-volume: 
double power-law 
 

 

                                                                     cluster-size [# grid-points*ΔV] 

• Fractal dimension of clusters, 
box-counting method in 3D: 
dimension 1.8, 
rarified sheet-like structures 
 fragmented current sheets 



Statistics of the electric field 

• Histogram of the magnitude of the total, 
parallel, and perp. electric field 

• Parallel el. field 100 times smaller than  
perpendicular one,  
power-law tail, index  1.6 

• Mean Dreicer field ED = 5 x 10-4 V/m 

• Perp. el. field clearly super-Dreicer, 
parallel el. field super-Dreicer only at a  
fraction of the grid-points 

• Threshold for iso-contours, clusters, and fractal dimesion: 140 ED  
 region of clearly super-Dreicer parallel el. Field. 
 

 

Dreicer  field 

threshold 



Statistical analysis of MHD data: Energies 

• Perpendicular dynamics expected to be dominated by E cross B drift: 
expected energetics 
    Ekin, EcB= (1/2) me (E cross B-velocity)2  
histogram of Ekin from all grid-sites:  
 power-law, index 1.3, yet maximum energy very small: 0.1 keV 
 we would expect perpendicular energization to be negligible 
(note: no test particles were run for this result) 

• Distribution  of  MHD flow kinetic energy  
    Ekin, B  =   (1/2) me V2 
 similar to E cross B energy 

• Distribution  of MHD temperature T 
  (3/2) kBT 
power-law and peak at 0.1 keV 

 

• Maximum energies in any case 0.2 keV 

 

 



Statistical analysis of MHD data: Energies 

• Distribution of the parallel electric energy: 
 WE|| = (1/2) ε0 Ε||

2  
Very extended double power-law, 
index 1.3 at high energies 

 

• highest energy 20 MeV  

 

 

 

 

 

 various power-law distributions already in MHD data ! 

 MHD simulation highly non-linear, far from equilibrium 



Test-particle simulations: the equations of motions 

• Direct, non-linear test-particle simulations, in 3D geometry: 
MHD fields are interpolated locally with 3D, continuous cubic polynomials  

• 1st order relativistic guiding center approximation  

 

 

 

 
(Tao, Chan,& Brizard (2007), Grebogi & Littlejohn (1984) 

• Benchmarked by comparing to integrating Lorentz force  
                     dr/dt  = v,       du/dt = (q/m)(v x B  + E) 
 Very good coincidence is found 

• Important: parallel electric field has to be interpolated explicitly, else 
artificial fields are generated ! 

• In any case, numerical integration with 4th order Runge Kutta, adaptive 
time-step scheme (version of Dormand Prince) 

• The code has been parallelized with OpenMP and with MPI 

 

 



Test-particle simulations: the set-up 

• The electric and magnetic field are de-normalized to SI units and  
not further scaled. 

• Mostly 100’000 to 500’000 electrons are traced, and intermediate and the 
final kinetic energy distribution is calculated 

• Final integration time mostly is 0.1 sec: 
MHD time-step = 25 sec, so particles evolve in fixed MHD snap-shots 

• the initial velocity is random Maxwellian, with temperature ≈ 9x105 K 

• initial position is uniformly random  
in a box in the central region  
around the main reconnection  
regions 

 



Standard jet: results at 0.1s 

• The final energy distribution at 0.1s is of Maxwellian shape at the low 
energies, and exhibits a double power-law tail 

Acceleration: 

• The maximum energy reached is about 2 MeV, and a power-law fit to 
the tail yields an index of about 1.30 at the lower energies and 1.76 at the 
higher energies. 

• 13% of the 100’000 particle have  
left leave at 0.1 s, and they have  
energies in the same range than  
those that stay inside,  
with a modulated power-law tail  
that is steeper though,  
with index 2.72 at the  
highest energies. 
  
 
 

 
 

 

 

 

 

 

  



Standard jet: results at 0.1s 

Acceleration, cont’d:    

• final total, parallel, and perpendicular kinetic energy at 0.1 s:  
- the power-law tail in the total kinetic energy stems from the parallel 
  kinetic energy, 
- essentially no energization in the perpendicular direction,  
 

important conclusion:  
acceleration is acting 
exclusively in the parallel direction. 

 

• simulation with 10 times more  
particles (1’000’000): no real changes 
in the results, statistics is good enough 
 
 
  



Standard jet: results at 0.1s 

Heating: 

particles that stay inside: 

• Maxwellian shape of the energy  
distribution at low energies: 
heating  from the initial 0.24 keV to 0.50 keV  
(1.8MK)  

• Temperature as a function of time increases  
linearly until 0.05 s and then starts to turn 
 over, reaches a peak value of 0.50 keV at 0.1 s 

leaving particles at low energies: 

• distribution reminiscent of a Maxwellian,  
temperature of about 13.3 keV: 
 super-hot population of 50 MK.  
(the statistics is not very good) 

• It is to note though that the energies 
are collected at different times for  
each particle. 
 
 



Standard jet: results at 1.0s 

Longer times: 1.0 s 

• 57% of the particles have left the system.  

• Still power-law tail, no clear scaling anymore at higher energies 
(poor statistics due leaving particles)  
highest energy reached  20 MeV (2MeV at 0.1s).  
Heating to a temperature of 0.4 keV (0.5 keV at 0.1s),  

• leaving particles: power-law tail similar as at 0.1 s,  
low energy part is closer to Maxwellian shape (T = 7.5 keV (28 MK))   

 
 
 
 
 
 



Standard jet: results at 0.1s 

The effect of collisions: 

• collisions with background electrons of the same T as the initial T of the 
test-particles.  
Collisions play a role at low energies only,  
as expected, cooling down the electrons  

• With collisions:       T = 0.38 keV,  
without collisions: T = 0.50 keV.  
cooling down   heating of the background 



Standard jet: results at 0.1s 

Orbits of 40 randomly chosen particles:  

• shows population that is heated or  
moderately accelerated 

 

 

 

 

orbits of the 40 most energetic particles:  

• clear preference in initial conditions: 
close to strong pos. and neg.  parallel el. field.  

• particles move some distance along  E-field   
pass then through it at some point,  
whereby their energy increases strongly 

 

 

• Chosen threshold in parallel electric field  
out-lines region of most efficient acceleration 
 



Diffusion coefficients: the connection to  Fermi acceleration and 
Fokker-Planck description 

• The Fokker-Planck equation (FPE) in velocity space writes as  
                        ∂f/∂t = ∇u· *−D · ∇u f + F f ]  
and in cylindrical coordinates u = (u⊥, u||) it takes the form 

 

 

 

 

 

• Time-dependent, velocity-space  
averaged transport coefficients, 
 where the average is over the  
sample of the test-particles, 

• Note, we use running estimate,  
at predefined monitoring times tk  
(Ragwitz and Kantz, PRL, 2001) 
 
 seems a detail, but turned out to be important 
(e.g. when trying to reproduce the results of a classical random walk with the 
numerical solution of the  FPE) 



Time-dependent, velocity-space averaged transport coefficients 

• Parallel diffusion/convection clearly dominates 

 

 

 

 

 

 

 

 

• Yet, this picture is too simple, we have to consider the velocity 
dependence 



Time- and velocity-space-dependent transport coefficients 

• An estimate of the velocity-space- and time-dependence of the transport 
coefficients, for given time tk, can be made by  
- first prescribing 2D bins in the u⊥ - u|| - plane, with mid-points (u⊥,i,u||,j), 

       - and then,, considering [(u(l)
||(tk+h) − u(l)

||(tk))
2] a function of (u⊥,i,u||,j) if 

  (u(l)
⊥(tk), u

(l)
||(tk)) lies in the respective bin (i,j)  

  for each particle, indexed with l,  

       - and do binned statistics to find the mean values such as 
 
 
 
 and the like for the other transport coefficients 

 

• Quite noisy, nonetheless with  
clear structure in parallel  
direction: 
 we can neglect the  
dependence on u⊥ ! 



Time- and v||-dependent transport coefficients 

• Diffusion coefficient: We ignore the dependence on u⊥  

 
 
 
 
 

          binned statistics                                          parabolic  fit 
 
 
 
 
 
 
 
 
 

• Some noise, yet parabolic fit seems reasonable, above all at small times 

 

 



Time- and v||-dependent transport coefficients 

• Convective coefficient: We again ignore the dependence on u⊥  

 
 
 

         binned statistics                                                 linear fit 

 

 

 

 

 

 

• Again, there is a lot of noise, yet the linear fit seems more or less reasonable  at 
small times 

 
 

• D|| ||, F||: Basic dynamic acceleration takes place up to 0.02sec, 
 particles have taken the energy that is available for them 
 there is a kind of saturation effect 

 



Summary 
• The MHD simulations yield various power-law distributions, and fractal 

structures, they are far from equilibrium 

• For the test-particles, we find acceleration and heating. 
Both are a transient phenomenon, there is a kind of saturation effect 

• Leaving particles form super-hot population, with power-law tail in energy 

• The parallel dynamics clearly dominate the energetics 

• transport coefficient are velocity-dependent, and seem to have simple 
functional form  

Future steps: 

• How are the various power-law indices related ? 

• Analyze different MHD snapshots,  
e.g. with ‘blowout jet’   

• Spatial structure of E-field needs  
still to be further analyzed: 
e.g. Eulerian vs Lagrangian  
correlation. 



THE PRESENTATION ENDS HERE 



Standard jet: results at 0.1s 

thick target HXR emission spectrum 

• The HXR spectrum is rather flat,  
with index mostly close to 1.2.  
HXR spectrum of the leaving particles is  
very similar in shape  
(asynchronous distribution !) 

 

 

• the time evolution of the power-law  
index of the spectrum.  
 
 



 



Time- and velocity-space-dependent transport coefficients 

• Parallel diffusion coefficient D|| ||  
 old result: D|| ||  prop. to v || 

2 
 clearly velocity dependent D, no obvious functional form, though 



Time- and velocity-space-dependent transport coefficients 

• Parallel convective coefficient F||   
 old result F|| prop to v ||  
 again: much less clear functional form now 

 



Correct form of transport coefficients 

• is the form                                                                      really correct, 
 
i.e. will – in well behaved cases – the FPE yield the same as do the  
test-particle simulations ? 

• We set up a simple random walk problem in 1D, with given step-size 
distribution for velocity and time, where D|| || can be derived analytically , and 
we estimate  
D|| || also numerically from the random walk: 
The numerical D|| || gave distributions clearly different from the random walk 

• Corrected form of estimator for D|| || (and the other coefficients): 
use running estimate, at predefined monitoring times tk, and define 

 

 

 

      numerical solution of FPE and random walk coincide very well ! 
 seems a detail, but turned out to be important 
 



The most explosive phase: collisions, relativistic effects 

• Collisions (with background electrons)  
play a minor role at low energies 

        collisions can be neglected 
(Monte Carlo collision operator,  
Hamamatsu, K et al.,  
Plasma Phys Contr Fus 49,  
1955 (2007)) 

• We consider the relativistic equations  
of guiding center motion, and compare  
with the non-relativistic case.  
In the relativistic case,  
the particles reach higher energies,  
in the intermediate to high energy range  
though, where a clear power-law is formed, the  
distribution is unaltered. 

       to be on the safe side, use relat. eqs. 



The most explosive phase 



The most explosive phase: longer times 

• We consider the relativistic equations of guiding center motion,  
for final times 0.1s and 0.3 
 The distributions are similar in shape,  
 at 0.3s the high energy part is less noisy and shows now a clear power-law  

 

• A fit in the range [10,1000] yields  
an index -1.9  
(the fit is though not very good at  
the higher energies) 



Before the most explosive phase 

• We consider the start of the blob formation 

• a fit in the range [0.4,80] yields a slope 1.2, 
i.e. the distribution is steeper (1.2 vs 0.6) in lesser developed turbulence, 
there seems to be less heating taking place at low energies 



Initial, quiet phase 

• snapshot 30 is far away from the blob formation,  
the coronal part still is rather quiet 

• The highest energy reached, 150 keV, is much smaller than in developed 
turbulence 

• up to 150keV the  
distributions are very similar,  
heating is similar in both  
MHD time instances 



The most explosive phase: HXR emission 

• Assuming that the particles instantaneously would precipitate onto the 
lower corona, we calculate the thick target HXR spectrum from the  
energy distribution (Brown, Holman) 

• HXR emission at three different times:  
The HXR spectrum is rather flat (slope 1.2 to 1.4). 



Collisions: benchmark 

• We use the Monte Carlo collision operator as described in Hamamatsu, K 
et al., Plasma Phys Contr Fus 49, 1955 (2007): 
random walk steps super-imposed on deterministic motion, 
after time intervals related to the collision time 

• Particles collide with a Maxwellian background 

• Benchmark: ions colliding  
with background electrons 
that have 4 times larger  
temperature than the ions  
initially: 
Final ion distribution well 
coincides with expected distribution, 
the ions are heated 
(after 300 sec,  
with collision time = 0.3 sec) 



 



 Spatial structure of the magnetic and electric field (2/2) 

• Magnitude of parallel electric field also  
fragmented  (dominantly responsible for acceleratiom, see later) 

 

 

 

 

 

 

 

 

 

• Fragmentation needs to be quantified: cluster analysis, fractal dimension: 
work in progress 



Summary of older results, presented in Ioannina 

• Collisional effects  are not import 

• Relativistic equations of motion should be used (the particles reach higher 
energies) 

• Longer integration times lead to more well formed power-laws 

• During explosive MHD phases, there is heating and acceleration,  
during quiet phases, there is only heating 

• calculating the thick target HXR spectrum from the we find so-far that 
the HXR spectrum is rather flat. 

• Scaling factor for E is necessary and strongly affects the results 

 

 


