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Outline 

3D nonlinear MHD simulations of an emerging  
flux tube,   
from convection zone into the corona  
(Vasilis Archontis): 

In this study: 

• Focus on the coronal part 

• Spatial structure and statistics of the  
electric field and other MHD quantities  

Test-particle simulations (electrons): 
- heating 
- acceleration 

• Particular aim of this project also is to investigate the  relation of  the 
acceleration mechanism to Fermi acceleration and Fokker-Planck modeling 
 determine transport coefficients 
 



MHD simulations: reconnection and standard jet 
 

• MHD snapshots of emerging flux tube, reconnecting with pre-existing 
ambient coronal field: 
- ‘standard’ jet is formed, which is triggered by the eruption of dense and 
    cool plasma from the emerging flux region 
- turbulence on small scales 

 



 Spatial structure of the magnetic and electric field  

• Snapshot 30, standard outflow jet: 

• We concentrate on parallel el. field since it is dominantly responsible for 
acceleration, see later 

• Parallel electric field shows fragmented structures,  
and has preferred regions of pos. and neg. sign 

 
                                                                                    parallel el. field 
 
 
 
 
 
 
 
 
 

• Fragmentation needs to be quantified: cluster analysis, fractal dimension 

 

 

magnitude of total el. field 



Cluster analysis of parallel electric field 

Cluster defined as grid-sites with above-threshold electric field, connected through  
nearest neighborhood 
Similar to 3D iso-contour-plot, but identifies not connected regions 
Free parameter: threshold 0.07, will be justified later 
 
              iso-contours                                                    cluster analysis 

 Cluster-size distribution 
 fractal dimension of cluster distribution 



Cluster-size distribution, fractal dimension  

• Cluster-size distribution,  
here size = number of  
grid-points a cluster consists of, 
times elementary grid-volume: 
double power-law 
 

 

                                                                     cluster-size [# grid-points*ΔV] 

• Fractal dimension of clusters, 
box-counting method in 3D: 
dimension 1.8, 
rarified sheet-like structures 
 fragmented current sheets 



Statistics of the electric field 

• Histogram of the magnitude of the total, 
parallel, and perp. electric field 

• Parallel el. field 100 times smaller than  
perpendicular one,  
power-law tail, index  1.6 

• Mean Dreicer field ED = 5 x 10-4 V/m 

• Perp. el. field clearly super-Dreicer, 
parallel el. field super-Dreicer only at a  
fraction of the grid-points 

• Threshold for iso-contours, clusters, and fractal dimesion: 140 ED  
 region of clearly super-Dreicer parallel el. Field. 
 

 

Dreicer  field 

threshold 



Statistical analysis of MHD data: Energies 

• Perpendicular dynamics expected to be dominated by E cross B drift: 
expected energetics 
    Ekin, EcB= (1/2) me (E cross B-velocity)2  
histogram of Ekin from all grid-sites:  
 power-law, index 1.3, yet maximum energy very small: 0.1 keV 
 we would expect perpendicular energization to be negligible 
(note: no test particles were run for this result) 

• Distribution  of  MHD flow kinetic energy  
    Ekin, B  =   (1/2) me V2 
 similar to E cross B energy 

• Distribution  of MHD temperature T 
  (3/2) kBT 
power-law and peak at 0.1 keV 

 

• Maximum energies in any case 0.2 keV 

 

 



Statistical analysis of MHD data: Energies 

• Distribution of the parallel electric energy: 
 WE|| = (1/2) ε0 Ε||

2  
Very extended double power-law, 
index 1.3 at high energies 

 

• highest energy 20 MeV  

 

 

 

 

 

 various power-law distributions already in MHD data ! 

 MHD simulation highly non-linear, far from equilibrium 



Test-particle simulations: the equations of motions 

• Direct, non-linear test-particle simulations, in 3D geometry: 
MHD fields are interpolated locally with 3D, continuous cubic polynomials  

• 1st order relativistic guiding center approximation  

 

 

 

 
(Tao, Chan,& Brizard (2007), Grebogi & Littlejohn (1984) 

• Benchmarked by comparing to integrating Lorentz force  
                     dr/dt  = v,       du/dt = (q/m)(v x B  + E) 
 Very good coincidence is found 

• Important: parallel electric field has to be interpolated explicitly, else 
artificial fields are generated ! 

• In any case, numerical integration with 4th order Runge Kutta, adaptive 
time-step scheme (version of Dormand Prince) 

• The code has been parallelized with OpenMP and with MPI 

 

 



Test-particle simulations: the set-up 

• The electric and magnetic field are de-normalized to SI units and  
not further scaled. 

• Mostly 100’000 to 500’000 electrons are traced, and intermediate and the 
final kinetic energy distribution is calculated 

• Final integration time mostly is 0.1 sec: 
MHD time-step = 25 sec, so particles evolve in fixed MHD snap-shots 

• the initial velocity is random Maxwellian, with temperature ≈ 9x105 K 

• initial position is uniformly random  
in a box in the central region  
around the main reconnection  
regions 

 



Standard jet: results at 0.1s 

• The final energy distribution at 0.1s is of Maxwellian shape at the low 
energies, and exhibits a double power-law tail 

Acceleration: 

• The maximum energy reached is about 2 MeV, and a power-law fit to 
the tail yields an index of about 1.30 at the lower energies and 1.76 at the 
higher energies. 

• 13% of the 100’000 particle have  
left leave at 0.1 s, and they have  
energies in the same range than  
those that stay inside,  
with a modulated power-law tail  
that is steeper though,  
with index 2.72 at the  
highest energies. 
  
 
 

 
 

 

 

 

 

 

  



Standard jet: results at 0.1s 

Acceleration, cont’d:    

• final total, parallel, and perpendicular kinetic energy at 0.1 s:  
- the power-law tail in the total kinetic energy stems from the parallel 
  kinetic energy, 
- essentially no energization in the perpendicular direction,  
 

important conclusion:  
acceleration is acting 
exclusively in the parallel direction. 

 

• simulation with 10 times more  
particles (1’000’000): no real changes 
in the results, statistics is good enough 
 
 
  



Standard jet: results at 0.1s 

Heating: 

particles that stay inside: 

• Maxwellian shape of the energy  
distribution at low energies: 
heating  from the initial 0.24 keV to 0.50 keV  
(1.8MK)  

• Temperature as a function of time increases  
linearly until 0.05 s and then starts to turn 
 over, reaches a peak value of 0.50 keV at 0.1 s 

leaving particles at low energies: 

• distribution reminiscent of a Maxwellian,  
temperature of about 13.3 keV: 
 super-hot population of 50 MK.  
(the statistics is not very good) 

• It is to note though that the energies 
are collected at different times for  
each particle. 
 
 



Standard jet: results at 1.0s 

Longer times: 1.0 s 

• 57% of the particles have left the system.  

• Still power-law tail, no clear scaling anymore at higher energies 
(poor statistics due leaving particles)  
highest energy reached  20 MeV (2MeV at 0.1s).  
Heating to a temperature of 0.4 keV (0.5 keV at 0.1s),  

• leaving particles: power-law tail similar as at 0.1 s,  
low energy part is closer to Maxwellian shape (T = 7.5 keV (28 MK))   

 
 
 
 
 
 



Standard jet: results at 0.1s 

The effect of collisions: 

• collisions with background electrons of the same T as the initial T of the 
test-particles.  
Collisions play a role at low energies only,  
as expected, cooling down the electrons  

• With collisions:       T = 0.38 keV,  
without collisions: T = 0.50 keV.  
cooling down   heating of the background 



Standard jet: results at 0.1s 

Orbits of 40 randomly chosen particles:  

• shows population that is heated or  
moderately accelerated 

 

 

 

 

orbits of the 40 most energetic particles:  

• clear preference in initial conditions: 
close to strong pos. and neg.  parallel el. field.  

• particles move some distance along  E-field   
pass then through it at some point,  
whereby their energy increases strongly 

 

 

• Chosen threshold in parallel electric field  
out-lines region of most efficient acceleration 
 



Diffusion coefficients: the connection to  Fermi acceleration and 
Fokker-Planck description 

• The Fokker-Planck equation (FPE) in velocity space writes as  
                        ∂f/∂t = ∇u· *−D · ∇u f + F f ]  
and in cylindrical coordinates u = (u⊥, u||) it takes the form 

 

 

 

 

 

• Time-dependent, velocity-space  
averaged transport coefficients, 
 where the average is over the  
sample of the test-particles, 

• Note, we use running estimate,  
at predefined monitoring times tk  
(Ragwitz and Kantz, PRL, 2001) 
 
 seems a detail, but turned out to be important 
(e.g. when trying to reproduce the results of a classical random walk with the 
numerical solution of the  FPE) 



Time-dependent, velocity-space averaged transport coefficients 

• Parallel diffusion/convection clearly dominates 

 

 

 

 

 

 

 

 

• Yet, this picture is too simple, we have to consider the velocity 
dependence 



Time- and velocity-space-dependent transport coefficients 

• An estimate of the velocity-space- and time-dependence of the transport 
coefficients, for given time tk, can be made by  
- first prescribing 2D bins in the u⊥ - u|| - plane, with mid-points (u⊥,i,u||,j), 

       - and then,, considering [(u(l)
||(tk+h) − u(l)

||(tk))
2] a function of (u⊥,i,u||,j) if 

  (u(l)
⊥(tk), u

(l)
||(tk)) lies in the respective bin (i,j)  

  for each particle, indexed with l,  

       - and do binned statistics to find the mean values such as 
 
 
 
 and the like for the other transport coefficients 

 

• Quite noisy, nonetheless with  
clear structure in parallel  
direction: 
 we can neglect the  
dependence on u⊥ ! 



Time- and v||-dependent transport coefficients 

• Diffusion coefficient: We ignore the dependence on u⊥  

 
 
 
 
 

          binned statistics                                          parabolic  fit 
 
 
 
 
 
 
 
 
 

• Some noise, yet parabolic fit seems reasonable, above all at small times 

 

 



Time- and v||-dependent transport coefficients 

• Convective coefficient: We again ignore the dependence on u⊥  

 
 
 

         binned statistics                                                 linear fit 

 

 

 

 

 

 

• Again, there is a lot of noise, yet the linear fit seems more or less reasonable  at 
small times 

 
 

• D|| ||, F||: Basic dynamic acceleration takes place up to 0.02sec, 
 particles have taken the energy that is available for them 
 there is a kind of saturation effect 

 



Summary 
• The MHD simulations yield various power-law distributions, and fractal 

structures, they are far from equilibrium 

• For the test-particles, we find acceleration and heating. 
Both are a transient phenomenon, there is a kind of saturation effect 

• Leaving particles form super-hot population, with power-law tail in energy 

• The parallel dynamics clearly dominate the energetics 

• transport coefficient are velocity-dependent, and seem to have simple 
functional form  

Future steps: 

• How are the various power-law indices related ? 

• Analyze different MHD snapshots,  
e.g. with ‘blowout jet’   

• Spatial structure of E-field needs  
still to be further analyzed: 
e.g. Eulerian vs Lagrangian  
correlation. 



THE PRESENTATION ENDS HERE 



Standard jet: results at 0.1s 

thick target HXR emission spectrum 

• The HXR spectrum is rather flat,  
with index mostly close to 1.2.  
HXR spectrum of the leaving particles is  
very similar in shape  
(asynchronous distribution !) 

 

 

• the time evolution of the power-law  
index of the spectrum.  
 
 



 



Time- and velocity-space-dependent transport coefficients 

• Parallel diffusion coefficient D|| ||  
 old result: D|| ||  prop. to v || 

2 
 clearly velocity dependent D, no obvious functional form, though 



Time- and velocity-space-dependent transport coefficients 

• Parallel convective coefficient F||   
 old result F|| prop to v ||  
 again: much less clear functional form now 

 



Correct form of transport coefficients 

• is the form                                                                      really correct, 
 
i.e. will – in well behaved cases – the FPE yield the same as do the  
test-particle simulations ? 

• We set up a simple random walk problem in 1D, with given step-size 
distribution for velocity and time, where D|| || can be derived analytically , and 
we estimate  
D|| || also numerically from the random walk: 
The numerical D|| || gave distributions clearly different from the random walk 

• Corrected form of estimator for D|| || (and the other coefficients): 
use running estimate, at predefined monitoring times tk, and define 

 

 

 

      numerical solution of FPE and random walk coincide very well ! 
 seems a detail, but turned out to be important 
 



The most explosive phase: collisions, relativistic effects 

• Collisions (with background electrons)  
play a minor role at low energies 

        collisions can be neglected 
(Monte Carlo collision operator,  
Hamamatsu, K et al.,  
Plasma Phys Contr Fus 49,  
1955 (2007)) 

• We consider the relativistic equations  
of guiding center motion, and compare  
with the non-relativistic case.  
In the relativistic case,  
the particles reach higher energies,  
in the intermediate to high energy range  
though, where a clear power-law is formed, the  
distribution is unaltered. 

       to be on the safe side, use relat. eqs. 



The most explosive phase 



The most explosive phase: longer times 

• We consider the relativistic equations of guiding center motion,  
for final times 0.1s and 0.3 
 The distributions are similar in shape,  
 at 0.3s the high energy part is less noisy and shows now a clear power-law  

 

• A fit in the range [10,1000] yields  
an index -1.9  
(the fit is though not very good at  
the higher energies) 



Before the most explosive phase 

• We consider the start of the blob formation 

• a fit in the range [0.4,80] yields a slope 1.2, 
i.e. the distribution is steeper (1.2 vs 0.6) in lesser developed turbulence, 
there seems to be less heating taking place at low energies 



Initial, quiet phase 

• snapshot 30 is far away from the blob formation,  
the coronal part still is rather quiet 

• The highest energy reached, 150 keV, is much smaller than in developed 
turbulence 

• up to 150keV the  
distributions are very similar,  
heating is similar in both  
MHD time instances 



The most explosive phase: HXR emission 

• Assuming that the particles instantaneously would precipitate onto the 
lower corona, we calculate the thick target HXR spectrum from the  
energy distribution (Brown, Holman) 

• HXR emission at three different times:  
The HXR spectrum is rather flat (slope 1.2 to 1.4). 



Collisions: benchmark 

• We use the Monte Carlo collision operator as described in Hamamatsu, K 
et al., Plasma Phys Contr Fus 49, 1955 (2007): 
random walk steps super-imposed on deterministic motion, 
after time intervals related to the collision time 

• Particles collide with a Maxwellian background 

• Benchmark: ions colliding  
with background electrons 
that have 4 times larger  
temperature than the ions  
initially: 
Final ion distribution well 
coincides with expected distribution, 
the ions are heated 
(after 300 sec,  
with collision time = 0.3 sec) 



 



 Spatial structure of the magnetic and electric field (2/2) 

• Magnitude of parallel electric field also  
fragmented  (dominantly responsible for acceleratiom, see later) 

 

 

 

 

 

 

 

 

 

• Fragmentation needs to be quantified: cluster analysis, fractal dimension: 
work in progress 



Summary of older results, presented in Ioannina 

• Collisional effects  are not import 

• Relativistic equations of motion should be used (the particles reach higher 
energies) 

• Longer integration times lead to more well formed power-laws 

• During explosive MHD phases, there is heating and acceleration,  
during quiet phases, there is only heating 

• calculating the thick target HXR spectrum from the we find so-far that 
the HXR spectrum is rather flat. 

• Scaling factor for E is necessary and strongly affects the results 

 

 


