

Probing the quiet Sun structure and dynamics with ground and space based instruments

I.Kontogiannis¹, C.Gontikakis², G.Tsiropoula¹, S.-H.Park¹ & K.Tziotziou¹

¹Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens ²Research Center for Astronomy and Applied Mathematics, Academy of Athens

Outline

- 1. Observations
- 2. Magnetic configuration
- 3. Morphology Structure
- 4. Chromospheric fine structure and transition region response
- 5. Wave propagation and interaction with the network magnetic field (2-D case)

Observations

Dutch Open Telescope (DOT): Hα speckle reconstructed, 5 positions along the profile G-band, Call H filtergrams

<u>Hinode SOT</u> G-band – Call H filtergrams (2 min cadence) SOT/SP: High resolution vector magnetogram

<u>Hinode EIS</u> 40" slots (65 s cadence) 2" slit raster

Hinode XRT: 'C_Poly' filtergrams (24 s cadence)

<u>SoHO/MDI:</u> High resolution LOS magnetograms (60 s cadence)

<u>TRACE:</u> 1550, 1600, 1700 Å images (30 s cadence)

October 15, 2007

Observations

(+) another line in the window

29/6/2015

12th HELAS conference, Thessaloniki 28/06 - 02/07/2015

Advantages

Coverage from photosphere to the corona High resolution magnetic field (MDI + SOT/SP) Hα spectral/temporal information

Drawbacks

Low resolution (EIS,MDI) Low cadence (30 s – 2 min) Fragmented mutual coverage Blended TR and coronal lines

Analysis / tools

<u>Magnetic field extrapolation</u> up to 10000 km from the photosphere (*Alissandrakis 1981*)

Co-alignment between all instruments.

Common time axis

Gaussian fitting of the EIS spectral lines

Construction of "synthetic rasters" in $H\alpha$ to compare with EIS rasters

EIS 40'' slot time series + H α to infer connections between phenomena at different heights

*H*α mottles follow magnetic field orientation (*Kontogiannis et al. 2010a, Leenaarts et al. 2012*)

$H\alpha$ absorption correlates with He II emission

Upper transition region lines (Mg VI-VII, Si VII, Fe VIII)

Associated with smaller scale loops and areas with large filling factor

Coronal lines - Soft X-rays

associated with open field lines and longer loops.

In general, magnetic loops with different T (Dowdy et al. 1986)

arcsec

arcsec

arcsec

arcsec

<u>He II 80.000 K:</u>

Network: similar velocity structures with

Internetwork structures exhibit some upward velocities, associated with IN features in H α .

250.000 - 630.000 K:

Network, a mixture of upward and downward velocities,

upward dominant over the boundary

<u>1.6 MK:</u> Upward velocities

<u>He II 80.000 K:</u>

Network: similar velocity structures with

Internetwork structures exhibit some upward velocities, associated with IN features in H α .

Emerging flux

Well established network boundary with an H α rosette.

250.000 - 630.000 K:

Network, a mixture of upward and downward velocities,

upward dominant over the boundary

<u>1.6 MK:</u> Upward velocities

Consistent with previous measurements (e.g. Fludra et al. 1999, Warren & Brooks 2010)

Derivation of temperatures is underway!

Temporal variations

Temporal variations from frame to frame betraying fast temporal variations (Peter, 2013)

Correspondence with H α Doppler-shifted features

Significant variations at the IN

Temporal variations - $\sigma/\langle I \rangle$ maps

12th HELAS conference, Thessaloniki 28/06 - 02/07/2015

Chromospheric jet with TR and coronal response 1

Chromospheric jet with TR and coronal response 1

Summary

A mixture of magnetic loops with various lengths constitute the low- β atmosphere.

Some of them do not reach coronal temperatures

HeII emission correlates very well with $H\alpha$ absorption and shows similar velocity structure at the network.

Transition region and coronal variations are related to $H\alpha$ structures.

The generating mechanism produces high temperatures (signal at MK temperatures and soft X-rays). Increased TR emission may be associated with chromospheric downflows.

Merging of photospheric bright points associated with chromospheric/TR jets.

Impulsive heating a viable mechanism in quiet Sun (e.g. reviews by *Klimchuk 2006, Reale 2010*)

High resolution magnetic field provides the opportunity to calculate parameters crucial for wave propagation!

$$\beta = P_{\rm g}/(B^2/2\mu_0)$$

Pg from Vernazza et al. 1981

Magnetic canopy: $\beta = 1$ surface (*Gabriel 1978*)

$$\upsilon_A = \frac{B}{\sqrt{\mu\rho}}$$

c_s (sound speed) *Vernazza et al. 1981* fast and slow speeds

18

Magnetic canopy height

What happens when acoustic waves meet the magnetic canopy?

What happens when acoustic waves meet the magnetic canopy?

Slow wave along magnetic field (transmission) U_{slow}

(Cally 2006, 2007, Schunker & Cally 2006, Stangalini et al. 2011, Nutto et al. 2012a,b)

12th HELAS conference, Thessaloniki 28/06 - 02/07/2015

What happens when acoustic waves meet the magnetic canopy?

Slow wave along magnetic field (transmission) U_{slow}

Fast wave across magnetic field (conversion) U_{fast}

Reflect when they meet high velocity gradients

<u>Conversion</u> is favored by large attack angle and high frequency (fast waves – high *f*) <u>Transmission</u> is favored by small attack angle and low frequency (slow waves – low *f*) (*Cally 2006, 2007, Schunker & Cally 2006, Stangalini et al. 2011, Nutto et al. 2012a,b*)

What happens when acoustic waves meet the magnetic canopy?

Snell's law $\frac{\sin \theta_{\rm i}}{\sin \theta_{\rm r}} = \frac{\nu_{\rm i}}{\nu_{\rm r}}$

i: incident acoustic wave*r*: refracted fast wave

 $\sin\theta_{\rm r} = \frac{\upsilon_{\rm f}}{c_{\rm s}}\sin\theta_{\rm i}$

Total internal reflection:

$$\frac{v_{\rm f}}{c_{\rm s}}\cos\theta > 1$$

Evidence: Dominant periods and turning height

Kontogiannis et al. 2014

Hα formation height: up to 1600 km

When turning height is lower that 1600 km, long period oscillations (low frequencies) dominate.

Phase difference analysis

Fast and slow waves are compressible and should be **BOTH** detected as oscillations in velocity and intensity signals.

<u>Wavelet spectral analysis</u> to detect period on every pixel (*Torrence & Compo 1998*)

<u>Phase difference analysis</u> between different filters is used to infer wave propagation between layers of the atmosphere. (*Lites et al. 1979, Bloomfield et al.* 2006)

Phase difference analysis: interpretation

Upward propagation:

 $\varphi_2 > \varphi_1, \ \Delta \varphi > 0$ $\Delta \varphi$ increasing monotonically with f

 $\Delta \phi = 2\pi \frac{dh}{\upsilon_{ph}} f$

 $dh=h_2-h_1$, height difference u_{ph} , phase speed

<u>Standing waves:</u> small and constant $\Delta \varphi$

Evidence: Lower phase differences at the magnetic canopy

Rutten et al. 2004, Cadavid & Lawrence 2012

Evidence: Standing wave pattern at the chromosphere

No wave propagation at the chromosphere (*Mein & Mein 1976, Schmieder 1979, Fleck1989*)

Lower phase difference: higher phase speed due to conversion to fast waves. The reflection on the turning height results to atmospheric layers oscillating in phase (*Nutto etal. 2012,a,b*)

The combination of standing and propagating waves result to a complex wave field. (*Deubner et al. 1996*)

Concluding remarks

Multi-wavelength studies provide the opportunity to study the dynamics of the quiet Sun in a two-fold way:

a) Wave propagation – interaction of various MHD modes with the magnetic field of the quiet Sun

b) Impulsive phenomena that appear in many temperatures/layers, are generated at the photosphere/chromosphere and affect transition region/corona.

High resolution magnetic field information is necessary

- 1) to resolve small scale magnetic fields in the quiet Sun
- 2) to determine the geometry of the chromoshperic/transition region/coronal magnetic field and
- 3) to accurately calculate parameters, important for wave propagation.

Thank You!