The Role of the Background Magnetic Field in the Major Eruptions of AR 11429

E. Liokati, A. Nindos, S. Patsourakos

Physics Department, University of Ioannina, Ioannina, Greece

Outline

- Purpose
- Data
- Method
- Results
- Conclusions & Future Work

Purpose

- Assess the role of the overlying background magnetic field as a confinement agent that tends to inhibit eruptions.
- How to do it? Calculate the temporal evolution of the magnetic field's decay index (i.e. how fast magnetic field decreases with height) for two major eruptions.

Data

- LOS Magnetograms HMI
- Images at 131Å (Fe viii 4×10^5 K) AIA
- Two major eruptions: 1) X5.4-class flare (AR 11429 on 7 March 2012, 00:02 UT).
 2) X1.3-class flare (AR 11429 on 7

March 2012, 01:15 UT).

 Calculate the temporal evolution of the decay index for an interval of about 48 hours that was roughly centered around the initiation times of the two major eruptions

Method

- Tracking the AR 11429 across the disk
- Compute the magnetic field with potential extrapolations
- Determine the computation box for the decay index, n $\left(n = -\frac{z}{B}\frac{\vartheta B}{\vartheta z}\right)$ calculation
- At each height calculate the decay index in the form of both average values and maps

Evolution of AR 11429

HMI/SDO B LOS data

Evolution of AR 11429

AIA/SDO 131 Å

First Event X5.4-Class Flare

First X5.4-Class Flare at 131 Å

Magnetic field just before the first flare

First Event Decay Index vs Height

First Event Decay Index vs Time @ Selected Heights

Second Event X1.3-Class Flare

Second X1.3-class flare at 131 Å

Magnetic field just before the second flare

Second Event Decay Index vs Height

Second Event Decay Index vs Time @ Selected Heights

Map of the Decay Index at Height z=2Mm

Decay Index vs Height Isocontours z=6-80 Mm

6 Mm 8 Mm 10 Mm 20 Mm 30 Mm 50 Mm 70 Mm 80 Mm

n=1.5

Conclusions

- The temporal variation of decay index is generally small
- Decay index over the areas of the source regions of the CMEs has been strong throughout the time series
- Torus instability may play an important role in the genesis of the two major eruptions

Future Work

 Comparison of our results with results from NLFFF extrapolations

 Calculation of the decay index of background magnetic field along oblique directions