

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS FACULTY OF PHYSICS Athens Space Weather Forecasting Center

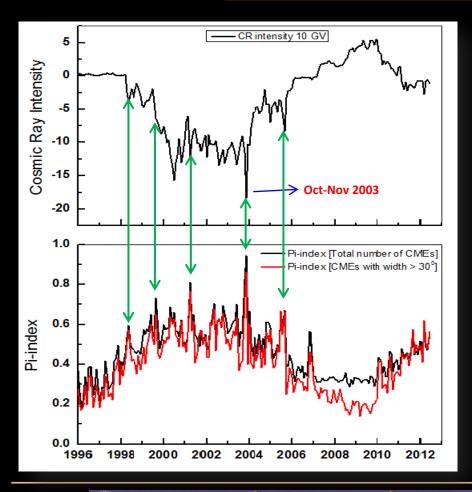
The CME-index for short-term estimation of Ap geomagnetic index based on the new ICME list

Evangelos Paouris and Helen Mavromichalaki

National & Kapodistrian University of Athens Physics Department

12th Hellenic Astronomical Conference Aristotle University Research Dissemination Center (KEDEA) Thessaloniki, June 28 - July 2, 2015

Athens Space Weather Forecasting Center


- 1. Anti-correlation between CMEs and Cosmic rays
- 2. The role of the CME-index on the Long-term Cosmic-ray Modulation
- 3. CME-index and the geomagnetic index Ap
- 4. Previous model of Ap estimation from CME-index
- 5. The new ICMEs list
- 6. An improvement of the CME-index using magnetic fields
- 7. Athens Space Weather Forecasting Center

Athens Space Weather Forecasting Center

CME-index and Cosmic-Rays

Anti-correlation between CMEs and Cosmic-Ray intensity r = -0.84 with 0 months time-lag

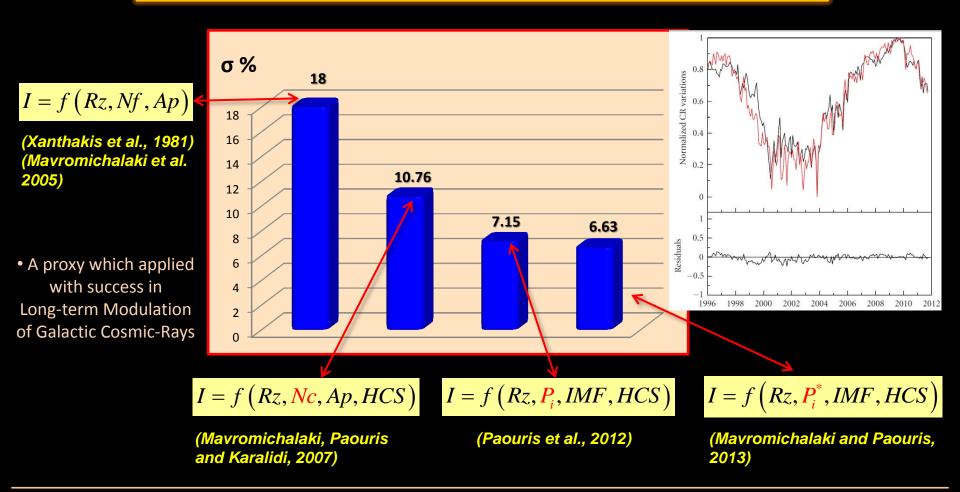
This index follows the relation:

$$P_{\rm i} = \alpha \cdot \frac{Nc}{Nc_{\rm max}} + \beta \cdot \frac{Vp}{Vp_{\rm max}}$$

lpha+eta=1 Nc: The maximum Nc: The maximum Nc_{max}: The maximum Vp: The average line Vp_{max}: The maximum Nc maximum

Nc: The monthly number of CMEs, Nc_{max}: The maximum Nc for the examined period Vp: The average linear speed of the CMEs per month, Vp_{max}: The maximum Vp for the examined period

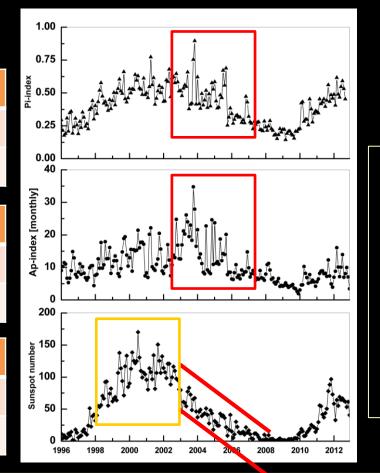
> (Paouris, 2013) (Mavromichalaki and Paouris, 2012)



NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS FACULTY OF PHYSICS

Athens Space Weather Forecasting Center

CME-index and Long-term Modulation


Athens Space Weather Forecasting Center

CME-index and Ap index

Correlation Analysis:

Ap-index - Rz				
Pearson cc	0.47			
Spearman cc	0.57			
Ap-index - P _i -index				
Pearson cc	0.68			
Spearman cc	0.67			
P _i -index - Rz				
Pearson cc	0.76			
Spearman cc	0.85			

Sunspot number: No information for extreme events!

CME-index: Based on the extreme events! "This index is strongly connected to extreme events and not only to the overall solar activity as the sunspot number does"

(Paouris, 2013)

🕽 12th Hellenic Astronomical Conference 🏧

Athens Space Weather Forecasting Center

Ap estimation from Pi-index – Previous Model

Determination of the best model function:

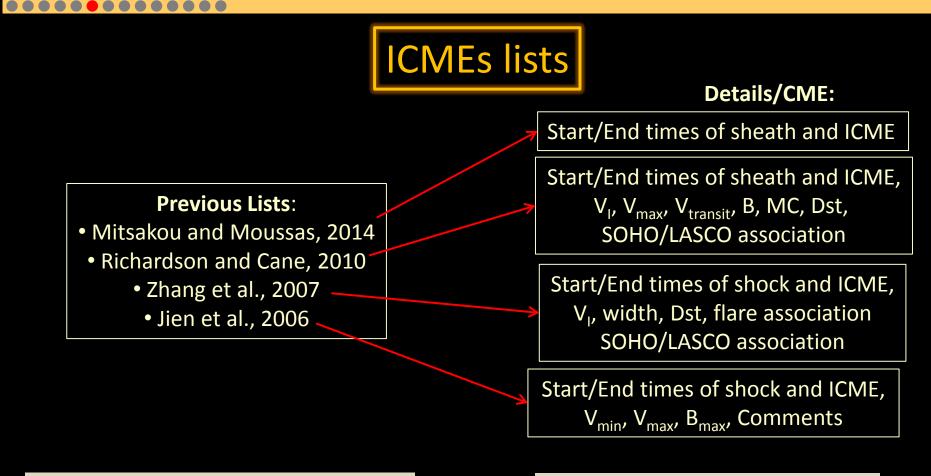
$$Ap = Ap_o + A \cdot e^{R_o \cdot P_i}$$

Pi: CME-index values

$$P_i = \frac{Vp}{Vp_{\text{max}}} + \frac{W}{W_{\text{max}}}$$

Ap calculated values

		Event	Ap _{calc}	Ap _{obs}	%				In the second
		2003/05/29	239	236	1	(Paouris	et al., 2013)		Improvement:
		2001/11/06	295	300	2				Introduction of the magnetic field and the
Results		2003/10/30	390	400	3	(Ap _{calc} – A	p _{obs})/Ap _{obs} (%)		
nebulto		2004/11/10	288	300	4	< 10 %	8		
18 events were studied		2001/11/24	248	236	5	< 20 %	1		
• Examined period: 1996-2	·	2000/08/12	166	179	7	< 30 %	2		transit velocity
 Ap (daily value) > 100 8 events with σ < 10% 		2003/10/31	325	300	8	< 30 %	2		of the CME in
		2003/11/20	275	300	8	< 40 %	3		the Pi-index
		2003/08/18	135	154	13	> 40 %	4		thetrimack

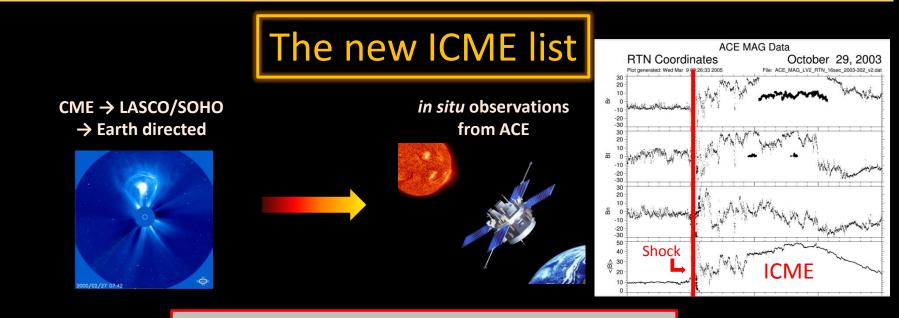

12th Hellenic Astronomical Conference

Aristotle University Research Dissemination Center (KEDEA) Thessaloniki, June 28 - July 2, 2015

Athens Space Weather Forecasting Center

Each one has important information but these are separated works

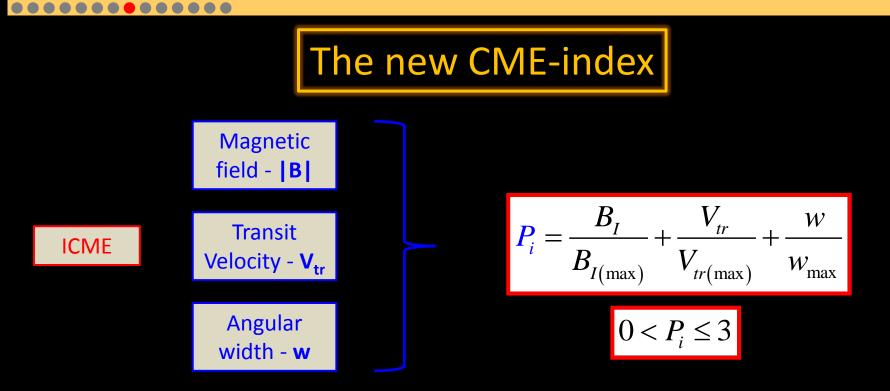
ONE list with as many as possible information per CME



NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS FACULTY OF PHYSICS

Athens Space Weather Forecasting Center

8


New List with 48 parameters for each CME/ICME:

Start time of the disturbance/discontinuity, Start/End time of the ICME, background conditions (before the arrival of the ICME), Shock/MC existence, Vinitial, Vicme/max, Vdist/max, Vtransit, Binitial, Bicme/max, Bdist/max, Bz_dist/icme/min, plasma parameters (plasma β, Tp, Np, alpha ratio), Dst min and time, Ap max and time, SOHO/LASCO CME association date/time and angular width, solar flare association C,M,X-class, peak time, AR region with coordinates, Comments about the event

Athens Space Weather Forecasting Center

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS FACULTY OF PHYSICS

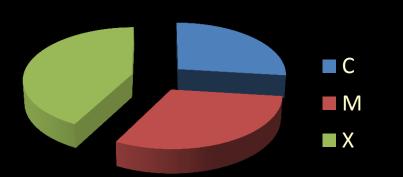
Athens Space Weather Forecasting Center

Data collection

Geomagnetic storms with 100 < Ap_{max} < 400
Examined period (1996 – 2012) number of events = 26

Dataset:

- 1. Ap geomagnetic index maximum value,
- 2. ICMEs characteristics (magnetic field, transit velocity, angular width)
- 3. CME-Flare association



NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS FACULTY OF PHYSICS

Athens Space Weather Forecasting Center

Analysis of Events

All of the ICMEs which caused geomagnetic storms are associated with a solar flare

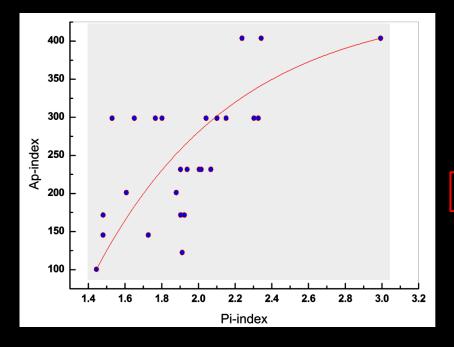
The most intense solar flare was a X17.2 which associated with the "Halloween event"

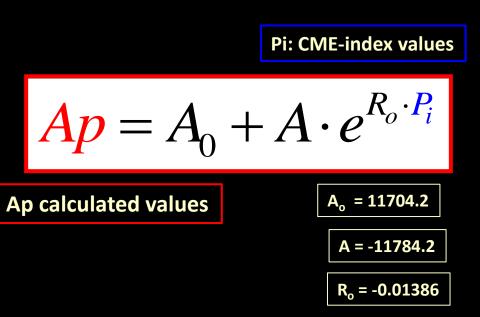
Events and Flare association	Events	MC	%
C – class	7	4	27
M – class	8	7	31
X – class	11	8	42

MC – Events: 73% The storm is associated with an interacting ICME with magnetic cloud

🕽 12th Hellenic Astronomical Conference 🕯

Aristotle University Research Dissemination Center (KEDEA) Thessaloniki, June 28 – July 2, 2015


.


NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS FACULTY OF PHYSICS

Athens Space Weather Forecasting Center

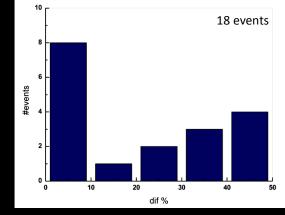
Ap index estimation

............


NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS FACULTY OF PHYSICS

Athens Space Weather Forecasting Center

Results



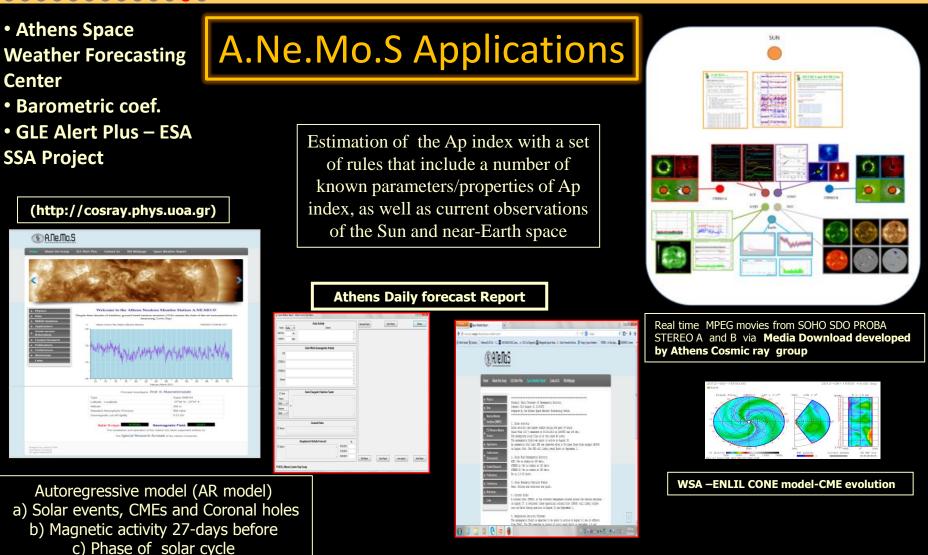
Event	Ap _{calc}	Ap _{obs}	%
2003/10/29 18:00-21:00	400	400	0
2006/12/15 00:00-03:00	232	236	1.5
2003/11/20 15:00-21:00	294	300	1.9
2001/04/11 21:00-24:00	243	236	2.9
2001/03/31 03:00-09:00	291	300	3.1
2001/03/31 21:00-24:00	159	154	3.2
2005/05/15 06:00-09:00	245	236	3.7
2000/09/17 21:00-24:00	227	236	3.9
2001/11/24 06:00-09:00	253	236	7.2
1999/09/22 21:00-24:00	223	207	7.7

(Paouris et al., 2013)

Variation (Ap _{calc} – Ap _{obs})/Ap _{obs} (%)			
< 10 %	8		
< 20 %	1		
< 30 %	2		
< 40 %	3		
> 40 %	4		

12th Hellenic Astronomical Conference

Aristotle University Research Dissemination Center (KEDEA) Thessaloniki, June 28 – July 2, 2015



Athens Space Weather Forecasting Center

14

12th Hellenic Astronomical Conference

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS FACULTY OF PHYSICS

Athens Space Weather Forecasting Center

- **1.** The new ICMEs list with 48 parameters for each event (Start/End times,
- velocities, magnetic fields B, Bz, plasma parameters, geomagnetic conditions)
- 2. CME-index defined for the first time from the magnetic field, transit velocity and angular width, with maximum value of Pi=3 for the event of 29/10/2003 which caused the most intense geomagnetic storm of solar cycle 23
- 3. All of the 26 events are associated with solar flares (27 % C-class, 31% M-class and 42% X-class)
- 4. The Ap values defined through the new Pi-index values are based on an exponential model with a very good approximation.

In future work:

- This method will be useful for Space Weather studies and it will be applied to the Athens Space Weather Forecasting Center very soon
- This preliminary study will be extended to the events with Ap<100
- Connection of this CME-index with solar flares and their characteristics (type, coordinates on the Sun)

Athens Space Weather Forecasting Center

Publication List

• Paouris, E., Mavromichalaki, H., Belov, A., Gushchina, R., Yanke, V.: "Galactic Cosmic Ray Modulation and the Last Solar Minimum", Solar Physics, 280, 255-271, 2012.

• Mavromichalaki, H. and Paouris, E.: "Long-Term Cosmic Ray Variability and the CME-Index", Advances in Astronomy, Article ID 607172, DOI: 10.1155/2012/607172, 2012.

• Paouris, E.: "Ineffectiveness of Narrow CMEs for Cosmic Ray Modulation", Solar Physics, DOI: 10.1007/s11207-012-0166-7, 2013.

• Paouris, E., Gerontidou, M. and Mavromichalaki, H.: "Using the CME-index for short term estimation of Ap geomagnetic index", HELASET, 2013.

• Richardson, I.G. and Cane, H.V.: "Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties", Solar Physics, 2010.

• Zhang, J., Richardson, I.G., Webb, D.F. et al.: "Solar and interplanetary sources of major geomagnetic storms (Dst 100 nT) during 1996–2005", Journal of Geophysical Research, vol. 112, 2007.

Athens Space Weather Forecasting Center

Thank You !

Athens NM Station

Neutron Detectors

