The 12<sup>th</sup> Hellenic Astronomical Conference

# A granule seen in the far wings of the H-alpha line: exceptional darkening before fragmentation



Sung-Hong Park<sup>1</sup>, Georgia Tsiropoula<sup>1</sup>, Ioannis Kontogiannis<sup>1</sup>, Kostas Tziotziou<sup>1</sup>, Eamon Scullion<sup>2</sup>, Gerry Doyle<sup>3</sup>

<sup>1</sup>IAASARS/NOA, <sup>2</sup>Trinity College Dublin, <sup>3</sup>Armagh Observatory



## **1. Introduction: Solar Interior**



Courtesy of Kelvin Song

Solar convection (red/blue: down/up flows; 15 hours)



48 Mm



# **1. Introduction: Solar Granulation**



#### **Typical characteristics of granules**

- Size: 1 Mm
- Doppler velocity: ~1 km/s at the disk center
- Radial expansion speed: ~1-2 km/s

- Lifetime: ~16 min
- Microturbulent velocity: ~2km/s
- Temperature: 5,000-10,000 K

### **1. Introduction: Evolution of Granules**



SST/CRISP H $\alpha$  wideband movie obtained by Luc Rouppe van der Voort

# **1. Introduction: Motivation & Objectives**

- Although our knowledge of granules and their evolution at the bottom of the photosphere is quite precise from mainly white-light or photospheric line observations, their temporal evolution throughout the photosphere is not well known.
- To this extent Hα far wing observations can be useful for the diagnosis of vertical flows and temperatures in the upper photospheric layers of granules in relation to their evolution.
- Using time series of two-dimensional (2D) high-resolution, high-cadence, Hα observations, we investigate temporal variations of some spectral properties of a quiet Sun granule.
- The study will provide a better understanding of the physics underlying the evolution of an individual granule at the near-surface layers of the Sun.

### 2. Observations: Swedish 1-m Solar Telescope (SST)



### **CRISP Ha Full FOV**



### **3. Results: Darkening before Fragmentation**

Period of Investigation: 2014 June 07 08:03-08:12 UT (~10 min)



x [Mm]

y [Mm]

### CRISP Hα+1.03Å Movie

2014 June 7 at 08:02:02 UT



y [Mm]

0

8 x [Mm]

16

#### **Two Spectral Properties: (1) Doppler Signal**

- Doppler Signal (DS) provides a qualitative picture of upward (positive DS) and downward (negative DS) moving material.
- We calculate DS from the  $\pm 0.77$ Å and  $\pm 1.03$ Å image pairs, respectively, using the following formula:

$$DS = \frac{I(+\Delta\lambda) - I(-\Delta\lambda)}{I(+\Delta\lambda) + I(-\Delta\lambda)}$$

- Note that a zero reference of DS is defined as the mean DS value of a neighboring quiet Sun region.

### **Two Spectral Properties: (2) Full-Width at Half-Maximum**

- We estimate the Full-Width at Half-Maximum (FWHM) of the Hα profiles of the granule area under study.
- The average line profile in the same neighboring quiet Sun region as used for determining the zero reference of DS is used to find the continuum intensity  $I_C$  by fitting it to a reference H $\alpha$  line profile (up to  $\pm 30$ Å from the line centre) published by David (1961).
- Then, FWHM is the wavelength separation between two wavelengths on either side of the profile where the spectrum intensity  $I = 0.5 \times (I_C + I_{min})$ .



### The Granule's Evolution I

- Formed at ~08:00 UT.
- During the initial phase (08:03 UT – 08:05 UT), the DS maps show mainly downflows in the intergranular lane, while upflows in the granule.
- From ~08:05 UT to 08:09 UT, the granule gets darker as observed in Hα wideband and far wing images. The DS and FWHM maps show downflows and important broadening of the spectral line.
- After the darkening finishes, the granule fragments into several small granules (e.g. at 8:11:47 UT).

#### The Granule's Evolution II: Space-time Slice Images



- Cloud events (marked by 1-5) very low intensity - high positive DS (high-speed upflow) - very high FWHM values

#### Granule

low intensity – negative DS (downflow) - high FWHM in the granule area.

#### - Rapid shrinkage

Granule's western boundary at ~08:07 UT.

#### The Granule's Evolution III: Hα Line Profiles



# 4. Summary and Discussion

The behaviour of the H $\alpha$  line profiles in the quiet Sun can be summarized as follows.

- 1. Initially, the granular region has its normal appearance, i.e. bright granule, dark intergranular lanes.
- 2. Most of the region in the granule gets dark at both far blue and red wings of the H $\alpha$  line, during a period of ~5 minutes.
- 3. During the darkening the line profiles in the granule are redshifted, asymmetric and broader relative to a quiet Sun mean profile.
- 4. The granule remains constant in size for most of the time, and then it shrinks before its fragmentation.
- 1. After the darkening phase the granule becomes fragmented into a number of small granules, while the line profile gets closer to the quiet Sun mean profile.

### Why this granule appears so dark in both Hα far wings?

- Of course, because of the broadening of the Hα line profile!
- Related to thermal and non-thermal broadening
- Non-thermal broadening is influenced by the unresolved granular motions associated with the so-called microturbulent velocities.
- Previous studies, however, indicate that granules have microturbulent velocities of the order of ~2 km/s at the photosphere that even decrease with height (see, e.g., Stodilka & Malynych 2006; Fontenla et al. 2008), so it is not expected that the increase of the FWHM is due to an increase of the microturbulent velocity.
- We conclude, therefore, that the increase of the H $\alpha$  line width is mainly due to thermal broadening and thus to temperature increase caused by adiabatic compression associated with the downflowing material and the granule's rapid shrinkage.
- In addition, it is conjectured that the granular fragmentation can be associated with the downflows in the granule, as well as the shrinkage of the granule.

### Thank you for your attention! Any comments or questions are welcome.