Effect of sun's mass loss in the dynamical evolution of the Solar System

Despoina K. Skoulidou

Harry Varvoglis & Kleomenis Tsiganis

Aristotle University of Thessaloniki

12th Hellenic Astronomical Conference July 1, 2015

Stability of the Solar System

Numerous studies for the stability of the Solar System:

- solar system marginally stable for time span 5 Gyr
- the dominant stabilizing role of the GR-induced correction

Laskar & Gastineau (2009): numerical integrations

- larger than 50% propability of instability without correction of General Relativity
- ullet otherwise, only $\sim 1\%$ propability

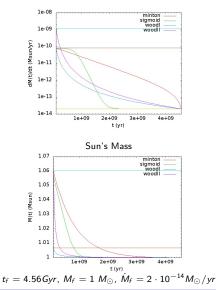
Batygin et al. (2015): analytical model

- mechanism of instability of Mercury's orbit
- $g_1 = g_5$ and overlap of high-order SRs responsible for chaotic motion

Previous studies do not take into account Sun's mass loss

Despoina K. Skoulidou (AUTh)

Introduction


Sun's mass loss during the main sequence

Mass Loss Rate

- Duncan & Lissauer (1998):
 - * mass loss rate $\sim 10^{-14}~M_\odot/yr$
 - * giant planets stable for the next $\sim 7 {\it Gyr}$
- Minton & Malhotra (2007): concern of faint young Sun paradox
 - * $M(0.1 Gyr) \simeq 1.06 \ M_{\odot}$
 - * minton: $\dot{M}(t) = \left[C aDe^{-at}\right] M_{\odot}/yr$

$$\dot{M}(t) = \left\lfloor \frac{a_1}{1+e^{a_2(t-a_3)}} + a_4 \right\rfloor M_{\odot}/y_{0}$$

- Wood et al. (2005): observations of stellar wind of solar-like stars
 - * $\dot{M}(t) \propto t^{-2.33 \pm 0.55} M_{\odot}/yr$
 - * woodl: $\dot{M}(0.1 Gyr) = \dot{M}_{minton}(0.1 Gyr) \rightarrow M(0.1 Gyr) \simeq 1.006 M_{\odot}$
 - * woodll: $M(0.1Gyr) = M_{minton}(0.1Gyr)$

Introduction

Initial Conditions

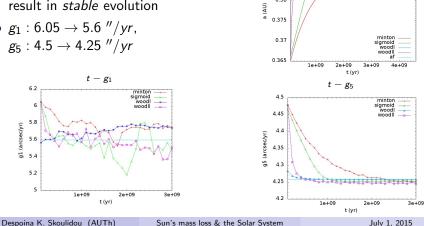
- Numerical integrations using SyMBA (Duncan et al. (1998))
- Add GR-terms: $\mathbf{a}_{GR} = -\frac{3\mathcal{G}M_{s}L^{2}}{c^{2}r^{4}}\hat{\mathbf{r}}$ (Wu & Lithwick (2011))
- Adiabatic invariance: t_{mass} loss >> T_{planets}

$$\frac{1}{a\left(t\right)}\frac{da\left(t\right)}{dt} = -\frac{1}{\mu\left(t\right)}\frac{d\mu\left(t\right)}{dt} \left(1\right), \quad \frac{de}{dt} = 0, \quad \mu\left(t\right) = \mathcal{G}\left(M_{s}\left(t\right) + m_{pl}\right)$$

Works well in 2BP with $e \leq 0.1$

- * Initial conditions of Terrestrial planets according to eq. (1)
- * Two different initial conditions of Giant planets:
 - i according to eq. (1) (Adiabatic Model)
 - ii according to Nice Model
- Computation of secular precession frequencies g_k , s_k using

$$z_k = e_k \cdot e^{-i \cdot \varpi_k}$$
 $\zeta_k = \sin\left(\frac{I_k}{2}\right) \cdot e^{-i\Omega_k}$


with Modified Fourier Transform (code given by D. Nesvorný)

Despoina K. Skoulidou (AUTh)

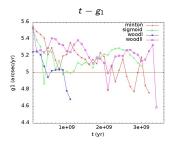
The Adiabatic Model

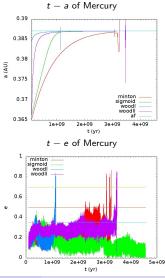
Adiabatic Model: 8 planets

- $t \in [0.1 \ Gyr, 4.56 \ Gyr]$
- Including GR-terms
- ALL 4 mass loss rate models result in *stable* evolution
- $g_1: 6.05 \rightarrow 5.6 "/yr$, $g_5: 4.5 \rightarrow 4.25 "/yr$

t - a of Mercury

0.39

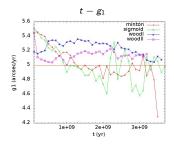

0.385

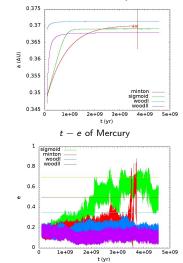

0.38

The Adiabatic Model

Adiabatic Model: 8 planets

- $t \in [0.1 \text{ Gyr}, 4.56 \text{ Gyr}]$
- NOT including GR-terms
- sigmoid: marginally stable
- minton,woodl,woodll: unstable
 - g₁ < 5 "/yr
 e > 0.5




Sun's mass loss & the Solar System

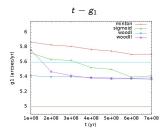
The Adiabatic Model

Adiabatic Model: 8 planets, modified initial conditions

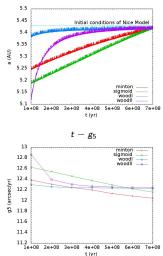
- inherent uncertainty of init. cond. of terrestrial planets (formation)
- assuming $\Delta a_{Mer} \sim 10^{-2} \ AU$ w.r.t. Adiabatic Model
- $t \in [0.1 \ Gyr, 4.56 \ Gyr]$
- including GR-terms
- woodl,woodll: stable
- minton, sigmoid: unstable

t - a of Mercury

Despoina K. Skoulidou (AUTh)

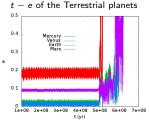

Sun's mass loss & the Solar System

July 1, 2015 7 / 11


The Nice Model

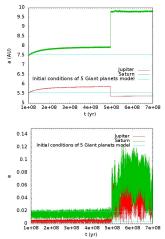
Nice Model: 4 Giant Planets (Levison et al. (2011))

- $t \in [0.1 \text{ Gyr}, 0.7 \text{ Gyr}]$ (pre-LHB epoch)
- Terrestrial planets, as in Adiabatic Model
- Giant planets near 3 : 2, 3 : 2, 4 : 3 MMR
- ALL 4 mass loss rate models result in *stable* evolution
- g₅ ~ 12 "/yr, in agreement with Brasser et al. (2009)
- $g_1: 5.9 \to 5.4$ "/yr


Despoina K. Skoulidou (AUTh)

Sun's mass loss & the Solar System

The Nice Model


Revised Nice Model: 5 Giant Planets (Nesvorný & Morbidelli (2012))

- $t \in [0.1 \text{ Gyr}, 0.7 \text{ Gyr}]$ (pre-LHB epoch)
- Terrestrial planets, as in Adiabatic Model
- Giant planets near 3 : 2, 3 : 2, 4 : 3, 5 : 4 MMR
 - * 3 ice giants: 2 Uranus, 1 Neptune
 - * 12 cases with 3 different positions of ice giants
- 1 of 12: unstable
 - * woodII, Neptune in last position
 - * Solar System dissolve

- * no planetesimal disk included
- different instability mechanism from Levison et al. (2011)

Jupiter and Saturn end up their current orbits

Conclusions

Conclusions

Adiabatic Model (no Nice Model instability):

- stable evolution, dominant role of GR
- uncertainty in initial conditions of terrestrial planets (i.e. 4% smaller a_{Mer}) could result in *unstable* evolution (even with GR)

Nice Model (4 or 5 giant planets):

- inherently more stable $(g_5 > 2g_1)$
- 1 case *unstable* in a 5-th giant planet scenario
 - * could be due to Sun's mass loss or other dynamical mechanism

We cannot exclude any model at that moment...

Thank you for your attention!