

European Union European Social Fund

FUROPEAN SOCIAL

Co-financed by Greece and the European Union

Dynamics of non-twisted flux tube emergence

P. Syntelis^{1,2}, V. Archontis³, C. Gontikakis², K. Tsinganos¹

¹University of Athens, ²Academy of Athens, ³St. Andrews University

ESPM 14, Dublin, 8-12 September 2014

Overview

Introduction

- What is flux emergence
- Twist in simulations
- The effect of twist: Highly twisted vs Weakly Twisted

Results on non-twisted flux tube

- Initial Conditions
- Below the photosphere
- Emergence into the atmosphere
- Resulting dynamics

Flux Emergence – Observations and Physics

Flux emergence is the process where magnetic fields emerge from the solar interior into the solar atmosphere and create dynamical phenomena.

- 1. Total pressure continuous $P_i + \frac{B_i^2}{8\pi} = P_e$
- 2. Thermal equilibrium $T_i = T_e$
- 3. To rise, $P_i < P_g \rightarrow \rho_i < \rho_e$
- 4. Buoyancy Instability(Parker 1955)

Introduction - Twist

Assuming a flux tube oriented along the y-axis:

$$B_y = B_0 e^{-\frac{r^2}{R^2}}$$
$$B_\phi = \alpha r B_y$$
$$\Delta \rho = \frac{p_t(r)}{p_{st}(z)} \rho_{st} e^{-\frac{y^2}{\lambda^2}}$$

Parameter α: twist per unit of length.High twist: $45^{\circ} B_{\varphi}$, B_y (a=0.4)Weak twist: $15^{\circ} B_{\varphi}$, B_y (a=0.1)No twist:a=0

Parameter λ : buoyant part of FT

Highly Twisted Flux Tube

The key characteristics of the emergence of a highly twisted flux tube are:

- Formation of a bipolar region.
- Shearing motions along the Polarity Inversion Line (PIL)

Interactions and eruptive phenomena:

1. Reconnection along the PIL due to sharing (e.g. van Ballegooijen and Martens 1989)

Fig: Van Ballegooijen and Martens 1989

The key characteristics of the emergence of a highly twisted flux tube are:

- Formation of a bipolar region.
- Shearing motions along the Polarity Inversion Line (PIL)

Interactions and eruptive phenomena:

2. Formation of post-emergence flux rope (PEFR) (e.g. *Manchester et al. 2004, Archontis et al 2009*)

Fig: Fan 2009

The key characteristics of the emergence of a highly twisted flux tube are:

- Formation of a bipolar region.
- Shearing motions along the Polarity Inversion Line (PIL)

Interactions and eruptive phenomena:

3. Eruption of the PEFR depending on initial field magnitude, external field etc. (e.g. Torok & Kliem 2005, Archontis and Hood 2012)

The key characteristics of the emergence of a highly twisted flux tube are:

- Formation of a bipolar region.
- Shearing motions along the Polarity Inversion Line (PIL)

Interactions and eruptive phenomena:

3. Formation of CME-like eruption (Archontis et al 2014, Syntelis et al in preparation, Poster 6.36)

Fig: Archontis et al 2014

The key characteristics of the emergence of a highly twisted flux tube are:

- Formation of a bipolar region.
- Shearing motions along the Polarity Inversion Line (PIL)

Interactions and eruptive phenomena:

4. Formation of jets and other eruptive phenomena (e.g. Yokohama and Shibata 1996, Archontis et al 2010, Gontikakis et al 2009)

Fig: Moreno-Insertis et al 2008

Fig: Archontis et al 2014

Weakly Twisted Flux Tube

Weakly Twisted Flux Tube – Basic Aspects

Weakly twisted flux tubes are less studied. Main Characteristics:

- 1. Formation of two bipolar regions (e.g. Murray et al 2006, Archontis et al 2013)
- Interacting magnetic lobes form jets and FRs. Building up high twist (e.g. Archontis et al 2013)

Figures from Archontis, Hood, Tsinganos 2013

Low/Non Twisted Flux Tube

Low/Non Twisted Flux Tubes

We know that:

- Lower twisted (α=0.1 and below <14_o B_φ, B_y) with λ=20 flux tubes fail to emerge. They just expand below the photosphere (e.g. Murray et al 2006, Toriumi et al 2011).
- But weakly twisted flux (0.1) tubes with λ=10 can emerge (Archontis et al 2013).

Questions:

- Is λ critical for the emergence of low twist flux tubes?
- Can low twist FTs emerge in some cases from the sub-photospheric layer?
- Are there any resulting dynamics?
 We study the highly idealized limit case of a non-twisted flux tube

Non Twisted Flux Tube

Initial Conditions

Initial Conditions – Initial Conditions

- Flux tube oriented along the y-axis $B_y = B_0 e^{-\frac{r^2}{R^2}}, R = 450 km$ $B_{\phi} = \alpha r B_y$ $\Delta \rho = \frac{p_t(r)}{p_{st}(z)} \rho_{st}(z) e^{-\frac{y^2}{\lambda^2}}, \lambda = 5, 10$ $B_0 = 2.8 kG, \beta = 25$
- Parameter α : twist per unit of length. *High twist:* 45° B_{φ} , B_y (α =0.4) *Weak twist:* 15° B_{φ} , B_y (α =0.1) *No twist:* α =0
- Locate at 2.1Mm below the photosphere

Initial Conditions – Initial Conditions

- Non magnetised atmosphere
- constant resistivity, no thermal conduction, no radiative transfer
- Stratified Atmosphere (like Archontis et al 2013)

LARE3D

- time dependent
- Resistive
- compressible MHD
- constant resistivity,
- joule and viscous heating

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \\ \displaystyle \frac{\partial (\rho \mathbf{v})}{\partial t} = -\nabla \cdot (\rho \mathbf{v} \mathbf{v}) + (\nabla \times \mathbf{B}) \times \mathbf{B} - \nabla P + \rho \mathbf{g} + \nabla \cdot \mathbf{S}, \\ \displaystyle \frac{\partial (\rho \epsilon)}{\partial t} = -\nabla \cdot (\rho \epsilon \mathbf{v}) - P \nabla \cdot \mathbf{v} + Q_{joule} + Q_{visc}, \\ \displaystyle \frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}, \\ \displaystyle \epsilon = \frac{P}{(\gamma - 1)\rho} \end{array} \right.$$

Non Twisted Flux Tube

Results

Non Twisted FT – Below photosphere

- 1. We examine the xz-midplane where $\Delta \rho$ is equal for both λ .
- 2. Higher $\lambda \rightarrow$ lower downwards tension \rightarrow higher upwards total force.
- 3. λ =10 reaches the photosphere faster and expands more.
- 4. $\lambda = 10$ has less P_{mag} when it reaches the photoshpere.

Non Twisted FT – Buoyancy Instability

Buoyancy Instability Critical Condition (Acheson, 1979):

$$-H_{\rm p}\frac{\partial}{\partial z}(\log B) / \left[-\frac{\gamma}{2}\beta\delta + k_{\parallel}^2 \left(1 + \frac{k_z^2}{k_{\perp}^2}\right)\right] > 1$$

- 1. Smaller $\lambda \rightarrow$ higher B and lower β
- 2. Satisfies the buoyancy Instability faster
- 3. λ =5 emerges into the atmosphere before λ =10

Emergence in a two-loop configuration

Non Twisted FT – Field Topology

Topology of field:

- Two linearly aligned bipoles
- Two expanding magnetic lobes
- Reconnection occurs at the interface of the lobes
- Forms an envelope field
- Forms an arcade

Non Twisted FT – Lobe Interaction I

Main points:

- Faster dynamics for λ=5
- Series of hot and cold jets are ejected
- Current sheet becomes subject to tearing instability forming plasmoids
- Followed by recurrent jets

Non Twisted FT – Lobe Interaction II

Jet Dynamics:

- Series of jet ejections in a recurrent manner
- Higher velocity/higher temperature jets in λ=5

Energy and flux:

- 5 times more Poynting flux on photosphere for λ =5
- 32% of the initial axial flux is transferred to the corona for λ =5
- 18% of the initial axial flux is transferred to the corona for λ =10

Non Twisted FT – Lobe Interaction III

We calculate the emission term: $I_i = \begin{cases} \rho^2, & \text{if } T_{\min} < T < T_{\max} \\ 0, & \text{if } T < T_{\min}, T > T_{\max} \end{cases}$ And calculate for λ =10 $I = \int I_i dy$ for 0.01-1MK and 1-10MK

- The arcade is found in the low temperatures.
- In high temperatures we find that the jets along the interface could increase T in of the low arcade in an intermittent manner.

Non Twisted FT – Summary

In the study of the non-twisted flux tubes we find:

- 1. Smaller buoyant part of the flux tube (λ) results to higher tension that affects whether the non-twisted flux tube can emerge above the photosphere.
- 2. The higher tension FT (λ =5) brings stronger B below the photosphere and leads to faster emergence above the photosphere.
- 3. The emergence produces a quadrapolar region (similar to the weakly twisted cases).
- 4. The interaction of the magnetic lobes results into dynamic phenomena (jet ejections) and forms post-emergence twisted structures (plasmoids)
- 5. More flux/energy is injected into the atmosphere in the lower λ
- 6. The dynamics of nearby jets along the current sheet deposits heat on the arcade in an intermittent manner.

Submitted in A&A Syntelis, P; Archontis, V.; Gontikakis, C.; Tsinganos, K. 2014

Thank you!

Non Twisted FT – Lobe Interaction II

Non Twisted FT – Emergence

In both cases:

- Lobe formation
- Collision of bipoles
- Absence of complex magnetic tails
- No rotation

In λ =5 case emergence shows:

- More rapid evolution
- Smaller Region
- Higher photospheric vecolity field
- Diffusion of finger

	λ=5	λ=10
First emergence (min)	80	166
Horizontal distance (Mm)	3	8.6

Non Twisted FT – Energy $\lambda = 10$

Non Twisted FT – Energy $\lambda = 5$

In the larger tension case more flux/energy is injected into the corona

Non Twisted FT – Undulation

In both cases we find undulation of the PIL due to pressure differences after the plasmoid ejections.

Non Twisted FT – Lobe Interaction

In the λ =5 case:

- ~5 higher reconnection rate $|\eta J|$
- Higher jets v, T
- 2-3 more cool plasma transferred
- Plasmoid formation

	λ=5	λ=10
T (MK)	7MK	5.2MK
V (kms⁻¹)	1179	220

Non Twisted FT – Below photosphere

- 1. We examine the xz-midplane where $\Delta \rho$ is equal for both λ .
- 2. Higher $\lambda \rightarrow$ lower downwards tension \rightarrow higher upwards total force.
- 3. λ =10 reaches the photosphere faster and expands more.
- 4. $\lambda = 10$ has less P_{mag} when it reaches the photoshpere.

Non Twisted FT – Below photosphere

- 1. We examine the xz-midplane where $\Delta \rho$ is equal for both λ .
- 2. Higher $\lambda \rightarrow$ lower downwards tension \rightarrow higher upwards total force.
- 3. λ =10 reaches the photosphere faster and expands more.
- 4. $\lambda = 10$ has less P_{mag} when it reaches the photoshpere.

Non Twisted FT – Plasmoid formation

- Increased

- $rac{\partial B_z/\partial y}{|B|}$
- Fragmentation,1st
 eruption, plasmoid
 formation
- Ascent of plasmoid
- 2nd eruption, plasmoid ejection - diffusion

Low/Non Twisted Flux Tubes

We know that:

 Non twisted flux tubes emerging from bottom of the convection zone become fragmented into two counter-rotating vortices (e.g. Shussler 1979; Longcope et al 1996).

Fig: Longcope et al 1996

The key characteristics of the emergence of a highly twisted flux tube are:

- Formation of a bipolar region.
- Shearing motions along the Polarity Inversion Line (PIL)

Interactions and eruptive phenomena:

- 1. Reconnection along the PIL due to sharing (e.g. van Balleggooijen and Martens 1989)
- 2. Formation of post-emergence flux rope (PEFR) (e.g. *Manchester et al. 2004, Archontis et al 2009)*
- 3. Eruption of the PEFR depending on initial field magnitude, external field etc. (e.g. Torok & Kliem 2005, Archontis and Hood 2012)
- 4. Formation of jets and eruptive phenomena (e.g. Gontikakis et al 2009, Moreno-Insertis et al 2008)
- 5. Formation of CME-like eruption (*Archontis et al 2014, Syntelis et al in preparation, Poster <POSTER NUMBER>*)