

Carrington-L5: The UK/US Operational Space Weather Mission

Dr Markos Trichas, Airbus Defence & Space, Future Programmes, UK 29 June 2015

Team

Industry:

Institutions:

Academia:

Imperial College London

Consultation:

What is Extreme Space Weather?

Severe disturbances of the upper atmosphere and near-space environment that can disrupt technology

Major Extreme Space Weather Events

(RAE, 2013)

- Carrington's Sketch shows a massive sunspot group extending over 30 degrees of the solar surface
- Sketch has a low level of detail, suggesting that the resolution of his telescope was insufficient to resolve detail less than 2 degrees across.
- This sunspot group may therefore have been larger than Carrington was able to record.

Space Weather Impacts

RAEng study (2013) assessed mainly UK vulnerabilities

Lloyds and RAL (2010) assessed impacts

UK/US Space Weather Impacts

Lloyds, 2010

RAEng, 2013

Metatech Corp, 2008, \$2 trillion

£10 billion

2003: 450 Spacecraft

- •1 total loss
- •10 operational loss
- •47 outages
- •11 Skynet-4 anomalous events in 48 hours

2015: >1000 spacecraft

- •10% outages
- Rapid ageing
- •\$30bn cost

Date	Event	Satellite	Orbit	Cause (probable)	Effects seen
8 March 1985		Anik D2	GEO	ESO	Outage
October 1989	CME-driven storm	TDRS-1	GEO	SEE	Outage
July 1991		ERS-1	LEO	SEE	Instrument failure
20 January 1994	Fast solar wind stream	Anik E1	GEO	ESD - note: all three satellites were of same basic design	Temporary outage (hours)
		Anik E2	GEO		6 months outage, partial loss
		Intelsat K	GEO		Temporary outage (hours)
11 January 1997	Fast solar wind stream	Telstar 401	GEO	ESD	Total loss
19 May 1998	Fast solar wind stream	Galaxy 4	GEO	ESO	Total loss
15 July 2000	CME-driven storm	Astro-D (ASCA)	LEO	Atmospheric drag	Total loss
6Nov 2001	CME-driven storm	MAP	Interplanetary L2	SEE	Temporary outage
240ctober 2003		ADEOS/MIDORI 2	LEO	ESD (solar array)	Total loss
26 October 2003	CME-driven storm	SMART-1	HEO	SEE	Engine switch-offs and star tracker noise
28 October 2003		DRTS/Kodama	GEO	ESO	Outage (2 weeks)
14 January 2005		Intelsat 804	GEO	ESO	Total loss
15 October 2006	Fast solar wind stream	Sicral 1	GEO	ESD	Outage (weeks)
5April 2010	Fast solar wind stream	Galaxy 15	GEO	ESO	Outage (8 months)
13 March 2012		Spaceway 3	GEO	SEE?	Outage (hours)
7 March 2012	CME-driven storm	SkyTerra 1	GEO	SEE/ESD?	Outage (1 day)
22 March 2012		GOES15	GEO	ESD?	Outage (days)

October 2003 (SWE)

October 2003 (normal day) vertical accuracy <20m

Carrington event: GNSS partial/complete loss for 3-1 days, UK cost ~£1 billion (RAE, 2013)

Space Weather Impact on Other Sectors

- Rail
- Phone/Radio/TV Networks
- Polar Flights (USA)
- Internet/Wireless Communications
- Pipelines
- Oil/Mineral Industries
- Finance
- Military Operations
- Human spaceflight
- Space tourism

(RAE, 2013)

As technology advances, society becomes more vulnerable to SWE events.

UK National Risk Register 2013/2014/2015

National Space Security Policy

URN: UKSA/13/1202

UK Met Office Space Weather Operations Centre (MOSWOC)

Embedded in Met Office Hazard Centre

- 24x7x365 29 April'14
- Full capability autumn October'14
- ~15 trained forecasters

Operational collaboration with NOAA, USAF & BGS

Daily forecast coordination

L5 & L1 Observations: The need for two umpires

From MOSWOC forecast 29/08/2014:

"SOHO LASCO C3 image showing an almost full halo CME. However it looks highly likely that this is from a back sided filament eruption, and so this CME is headed almost directly away from Earth."

Mission Drivers

Instrument		
Coronagraph	Critical for identifying Earth-directed CME	
Heliospheric Imager	Critical for identifying Earth-directed CME, and imaging arrival at Earth	
Particles/fields	Measurement of CIR approaching Earth.	
EUVI	To image solar active centres, in particular to assess the potential for eruptions/flare at sites as the approach locations well connected to Earth	
Magnetograph	To image the magnetic structure of the photosphere at sites approaching locations well connected to Earth. Earth-directed events that originate in the field-of-view of the magnetogram, the data can be used to give an indication of the level of geomagnetic activity that will follow. Assess the potential for eruptions/flare.	

- MOSWOC/SWPC operational requirements
- Lifetime: 10 years (<2 years transfer)
- 24/7 transfer of data (operational mission)
- UK/US bilateral (high UK/US heritage)
- High TRL platform/components/payloads,
- Low risk/cost
- Development in <5 years from Phase-0 to launch

Design Trade-Offs

- 1. Direct injection by Falcon-9 to L5
- 2. Stopping manoeuvre at L5
- 3. Spacecraft mass up to 2300 Kg
- Venus Express platform/propulsion
- 5. Sentinel-5P AOCS
- Solar Orbiter avionics
- 7. Mars Express 1.6m antenna
- 8. 100% coverage with 4x15m ground stations
- Daily download: 4.32 Gb (STEREO 5.6Gb) 9.

SOLO OBC/RIU

LGA (from LPF)

S5P STR

- Stable point
- Minimal AOCS requirements
- Continuous transfer of data to Earth
- Persistent monitoring of Sun
- Persistent monitoring of event propagation

Cost & Schedule

- Mission Cost: £200M (\$300M) (UK, USA, Korea, others)
- UKSA:
 - €1.5M (Cost-benefit analysis and Phase-0)
- ESA:
 - €400K (L1/L5 Phase-0)
 - €5M (ESC)
- Other activities:
 - White paper (UK/US)
 - Discussions with UK/US agencies for L1/L5 synergies
 - Classified military impacts report (UK/US)
 - Airbus funded L1 CubeSat
 - Internal R&D

Year	Schedule
2015	Phase 0 study.UKSA & NOAA/NASA agreementAO for instruments
2016	Instrument selectionPhase A/B starts
2017	Mission selectionPhase B2CDSystem PDR
2018	System CDRInstrument CDRLaunch procurement
2019	S/C build integration & testInstrument delivery
2020	System integration
2021	• Launch

Summary

Questions? markos.trichas@airbus.com

