

PEOPLE

STARDUST

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

The Hoffmeister asteroid family: the role of Ceres

Georgios Tsirvoulis

B. Novakovic, C. Maurel, Z. Knezevic

2

Overview

- Introduction
- Motivation
- Methods & Results
- Concluding remarks

Introduction

• What is an asteroid family?

Introduction

• What is an asteroid family?

5

- What is an asteroid family?
- Identified in the space of proper elements (Knezevic & Milani)

6

- What is an asteroid family?
- Identified in the space of proper elements (Knezevic & Milani) using the HCM (Zappala et al. 1990)

- What is an asteroid family?
- Identified in the space of proper elements (Knezevic & Milani) using the HCM (Zappala et al. 1990)

8

- What is an asteroid family?
- Identified in the space of proper elements (Knezevic & Milani) using the HCM (Zappala et al. 1990)

Motivation

- Asymmetric shape of the family in the a_p vs. sin(i_p) plane
- Yarkovsky is the causes evolution in a
- What causes the evolution in I of the left part?

• We perform numerical simulations of fictitious family fragments

- We perform numerical simulations of fictitious family fragments
 - ~1620 test particles
 - 4 giant planets as perturbers
 - Integrate for 300 Myrs (age estimated by Spoto et al. 2015)
 - Yarkovsky effect calibrated by WISE albedo data (Masiero et al. 2011)

2

Methods

• Evolution of the fragments:

- Result:
 - No evolution in inclination at all!

- Result:
 - No evolution in inclination at all!
- Solution?

- Result:
 - No evolution in inclination at all!
- Solution?
 - TRY AGAIN!

- What could we improve?
 - ~1620 test particles
 - 4 giant planets as perturbers
 - Integrate for 300 Myrs (age estimated by Spoto et al. 2015)
 - Yarkovsky effect calibrated by WISE albedo data (Masiero et al. 2011)

- What could we improve?
 - ~1620 test particles
 - 4-giant planets as perturbers \rightarrow 7 planets
 - Integrate for 300 Myrs (age estimated by Spoto et al. 2015)
 - Yarkovsky effect calibrated by WISE albedo data (Masiero et al. 2011)

- What could we improve?
 - ~1620 test particles
 - 4-giant planets as perturbers \rightarrow 7 planets
 - Integrate for 300 Myrs (age estimated by Spoto et al. 2015)
 - Yarkovsky effect calibrated by WISE albedo data (Masiero et al. 2011)
- Result?

- What could we improve?
 - ~1620 test particles
 - -4-giant planets as perturbers \rightarrow 7 planets
 - Integrate for 300 Myrs (age estimated by Spoto et al. 2015)
 - Yarkovsky effect calibrated by WISE albedo data (Masiero et al. 2011)
- Result?
 - Still nothing...

- What could we improve?
 - ~1620 test particles
 - -4-giant planets as perturbers \rightarrow 7 planets
 - Integrate for 300 Myrs (age estimated by Spoto et al. 2015)
 - Yarkovsky effect calibrated by WISE albedo data (Masiero et al. 2011)
- Result?
 - Still nothing...
- What more can we do?

- What could we improve?
 - ~1620 test particles
 - -4-giant planets as perturbers \rightarrow 7 planets
 - Integrate for 300 Myrs (age estimated by Spoto et al. 2015)
 - Yarkovsky effect calibrated by WISE albedo data (Masiero et al. 2011)
- Result?
 - Still nothing...
- What more can we do?
 - 4 planets + CERES

• Evolution of the fragments:

• Ceres is responsible for the evolution in inclination of the inner part

• Ceres is responsible for the evolution in inclination of the inner part

• HOW?

- HOW?
 - Close encounters?

- HOW?
 - Close encounters?

- HOW?
 - Close encounters?
 - Primarily jumps in **a**
 - No asymmetry of the actual family in e, only in i

- HOW?
 - Close encounters?
 - Primarily jumps in **a**
 - No asymmetry of the actual family in e, only in I
 - 1/1 MMR with Ceres?

29

Results

• HOW?

• 1/1 MMR with Ceres?

- HOW?
 - Close encounters?
 - Primarily jumps in **a**
 - No asymmetry of the actual family in e, only in I
 - 1/1 MMR with Ceres?
 - Temporarily trapped
 - No reason to affect only inclination

- HOW?
 - Close encounters?
 - Primarily jumps in **a**
 - No asymmetry of the actual family in e, only in I
 - 1/1 MMR with Ceres?
 - Temporarily trapped
 - No reason to affect only inclination
 - Let's draw the frequency space

• HOW?

Proper frequencies of the test particles:

• HOW?

Proper frequencies of the test particles:

• HOW?

Proper frequencies of the test particles:

- HOW?
 - Close encounters?
 - Primarily jumps in **a**
 - No asymmetry of the actual family in e, only in I
 - 1/1 MMR with Ceres?
 - Temporarily trapped
 - No reason to affect only inclination
 - Let's draw the frequency space
 - Could a secular resonance with Ceres be responsible for the jump in i?

36

Results

Could a secular resonance with Ceres do the trick?

Conclusions

• The linear nodal secular resonance with Ceres (S-Sc) is responsible for the asymmetrical distribution of the Hoffmeister family fragments

Conclusions

 The linear nodal secular resonance with Ceres (S-Sc) is responsible for the asymmetrical distribution of the Hoffmeister family fragments

"Asteroid Secular Dynamics: Ceres' Fingerprint Identified"

<u>Novaković, Bojan; Maurel, Clara; Tsirvoulis, Georgios; Knežević, Zoran</u> The Astrophysical Journal Letters, Volume 807, Issue 1, article id. L5, 5 pp. (2015).

Conclusions

 The linear nodal secular resonance with Ceres (S-Sc) is responsible for the asymmetrical distribution of the Hoffmeister family fragments

"Asteroid Secular Dynamics: Ceres' Fingerprint Identified"

<u>Novaković, Bojan; Maurel, Clara; Tsirvoulis, Georgios; Knežević, Zoran</u> The Astrophysical Journal Letters, Volume 807, Issue 1, article id. L5, 5 pp. (2015).

- More asteroid families with similar characteristics verify the mechanism
- Secular resonances with massive asteroids are important for the dynamical evolution of smaller asteroids

PEOPLE

STARDUST

PUSHING THE BOUNDARIES OF SPACE RESEARCH TO SAVE OUR FUTURE

Thank you