Magnetic energy and helicity budgets of solar quiet regions and their role in fine structure dynamics

Kostas Tziotziou

IAASARS, National Observatory of Athens, Greece

Work in collaboration with:

Georgia Tsiropoula, IAASARS, National Observatory of Athens, Greece Sung-Hong Park, IAASARS, National Observatory of Athens, Greece Ioannis Kontogiannis, IAASARS, National Observatory of Athens, Greece Manolis Georgoulis, RCAAM, Academy of Athens, Greece

Magnetic helicity and free magnetic energy

Magnetic helicity: quantifies distortion (twist and writhe) and linkage of magnetic field lines compared to their current-free potential state

Free magnetic energy: quantifies the excess energy on top of "ground" potential energy

While free energy is released via reconnection, helicity in plasmas with high Reynolds numbers is mostly conserved during reconnection; hence, if not transferred to other solar areas, has to be bodily removed

Helicity/Energy derivation

Volume calculations

$$H_m = \int_{\mathcal{V}} (\mathbf{A} \pm \mathbf{A}_{\mathbf{p}}) \cdot (\mathbf{B} \mp \mathbf{B}_{\mathbf{p}}) d\mathcal{V}$$
$$E_{\rm c} = E_{\rm t} - E_{\rm p} = \frac{1}{8\pi} \int_{\mathcal{V}} \mathrm{d}V \,\mathbf{B}^2 - \frac{1}{8\pi} \int_{\mathcal{V}} \mathrm{d}V \,\mathbf{B}_{\rm p}^2$$

METHODOLOGY

1st method: New NLFF approach for energy/helicity calculations

The method translates a *single vector magnetogram* into a collection of *N* slender flux tubes by:

- ✓ partitioning the magnetic field configuration into an ensemble of p positive and n negative "magnetic charges"
- ✓ populating the p × n connectivity matrix that contains fluxes committed to each ij-connection, using the simulated annealing method
- \checkmark assuming each connection to be a slender flux tube with a forcefree parameter α_{ij} (mean of α -parameters of connected partitions)

$E_{c} = A\lambda^{2}\sum_{l=1}^{N} \alpha_{l}^{2} \Phi_{l}^{2\delta} + \frac{1}{8\pi} \sum_{l=1}^{N} \sum_{m=1, l \neq m}^{N} \alpha_{l} \mathcal{L}_{lm}^{\operatorname{arch}} \Phi_{l} \Phi_{m}$ $Self term \qquad Mutual term$ $H = 8\pi\lambda^{2}A \sum_{l=1}^{N} \alpha_{l} \Phi_{l}^{2\delta} + \sum_{l=1}^{N} \sum_{m=1, l \neq m}^{N} \mathcal{L}_{lm}^{\operatorname{arch}} \Phi_{l} \Phi_{m}$ Relative magnetic helicity

 λ : pixel size A, δ: known scaling constants *l,m*: different flux tubes with known flux Φ and FF parameter α

 \mathcal{L}_{lm}^{arch} describes "interaction" between flux tubes (derived from trigonometric interior angles)

(Georgoulis etal, 2012, ApJ, 759, 1)

METHODOLOGY

2nd method: Helicity and energy injection rate calculations

$$\left. \frac{dH}{dt} \right|_{S} = 2 \int_{S} (\mathbf{A}_{p} \cdot \mathbf{B}_{h}) \upsilon_{\perp n} dS - 2 \int_{S} (\mathbf{A}_{p} \cdot \boldsymbol{\upsilon}_{\perp t}) B_{z} dS$$

Berger & Field (1984)

Kusano *etal.* (2002)

Best method for velocity field calculation: DAVE4VM (Schuck 2008)

Finds the velocity by using the normal component of the ideal induction equation

$$\partial_t B_z + \nabla_h \cdot (B_z \boldsymbol{v}_h - \upsilon_z \mathbf{B}_h) = 0$$

Applying the first method to quiet Sun regions

Example of quiet Sun connectivity

Validity of the method

The NLFF method reproduces the general configuration inferred from Hα observations and extrapolations

The energy – helicity diagram of quiet Sun

See also poster S1.05 by Georgoulis etal.

55 Hinode QS regions

Scaling law:

 $|H_m| \propto E_c^{0.84 \pm 0.05}$

Tziotziou *etal.* 2014, A&A, 570, L1, Tziotziou *etal.* 2014, A&A, 564, A86 Tziotziou *etal.* 2012, ApJL, 759, 4)

Helicity behaviour:

- eruptive ARs have a dominant sense of helicity
 f = 0.58 ± 0.27 (on average ~ 4:1 dominance)
- QS regions incoherent in terms of helicity sense
 f = 0.2 ± 0.17 (on average ~ 1.5:1 dominance)

Majority of ARs formed deep inside the convection zone while QS structures formed by shallow, near-surface, convection-powered dynamo

Energy and helicity as function of network area

Dependence stems from the hierarchical structure of the magnetic field in QS: supergranular cells/network with rather similar physical characteristics (sizes, magnetic flux concentrations)

structure: dgets scale roughly with number in an area ger the derived network areas

Energy and helicity injection rates

RESULTS OF FIRST METHOD

Instantaneous energy and helicity budgets

RESULTS

Energy and helicity budgets in a solar cycle

First method

Instantaneous budgets for network with $ B_{i} > 200 G$						
Relative helicity (Mx²)		Free energy (erg)				
Maximum	Minimum	Maximum	Minimum			
$1.42\pm0.05\times10^{42}$	$3.54\pm0.13\times10^{42}$	$5.62\pm0.21\times10^{32}$	$1.41\pm0.05 \times 10^{33}$			

Energy and helicity replenishes within 1.8±0.9 d (Rieutord & Rincon 2010)

Second method $2.70\pm1.37 \times 10^{15} \text{ Mx}^2 \text{ cm}^{-2} \text{ s}^{-1}$ $7.73\pm3.67 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1}$

Total within a solar cycle		
Relative helicity (Mx²)	Free energy (erg)	
5.02±2.52 × 10 ⁴⁵	$1.99 \pm 1.0 \times 10^{36}$	
9.1±4.56 × 10 ⁴⁵	2.6±1.2 × 10 ³⁶	
Higher than previous	studies:	

~10⁴³ Mx² (Welch & Longcope 2003) ~1.5 ×10⁴⁴ Mx² (Georgoulis etal. 2009)

RESULTS OF FIRST METHOD

Energy dissipation and small-scale dynamics

Free energy rate				
First method	Second method			
5.4 ×10 ⁵ erg cm ² s ⁻¹	7.73 ×10 ⁵ erg cm ² s ⁻¹			

Energy dissipated by fine structures: 1.2 ×10⁵ erg cm² s⁻¹ (Tsiropoula & Tziotziou 2004) 7 ×10⁵ erg cm² s⁻¹ (Moore *et al.* 2011)

Conclusions

Investigated energy and helicity in quiet Sun region with two different methods

> Just like in ARs, there exists a monotonic relation between free magnetic energy and relative magnetic helicity in quiet-Sun regions $|H_m| \propto E_c^{0.81}$

Contrary to ARs quiet-Sun regions have no dominant sense of helicity (near-surface dynamo?)

> There exists a monotonic relation between helicity/energy and network area

➤ Considerable amounts of free energy and helicity present on the quiet-Sun solar surface (similar to a moderate X-class producing AR)

> Helicity/energy budgets during an entire solar cycle higher than previously reported values

Free energy budgets considerable and enough to power the dynamics of quiet Sun fine structures (mottles, spicules etc)

Thank you!

Relevant papers:

➢ Georgoulis, Tziotziou & Raouafi, 2012, ApJ, 759, 1, "Magnetic Energy and Helicity Budgets in the Active-region Solar Corona. II. Nonlinear Force-free Approximation"

Tziotziou, Tsiropoula, Georgoulis & Kontogiannis, 2014, A&A, 564, A86 "Energy and helicity budgets of solar quiet regions"

> Tziotziou, Moraitis, Georgoulis & Archontis, 2014, A&A, 570, L1 "Validation of the magnetic energy vs. helicity scaling in solar magnetic structures"

> Tziotziou, Park, Tsiropoula & Kontogiannis, 2015, A&A, submitted *"Energy and helicity injection in solar quiet regions"*