A deep *Chandra* observation of the interacting star-forming galaxy Arp299

Konstantina Anastasopoulou^{1,2}

A.Zezas^{1,2}, R.Della Ceca³, L. Ballo³

 University of Crete, Department of Physics, Heraklion 71003, Greece
 Foundation for Research and Technology - Hellas (FORTH), Heraklion 71003, Greece
 INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano, Italy

Introduction

Interactions and mergers are the key mechanisms that:

drive gas into the nuclear regions of galaxies

fuel active galactic nuclei (AGN)

fuel circumnuclear star formation

NGC 3256 Credit:Hubble/ESA

The interplay between starbursts and AGN activity can reveal the nature of high-redshift "normal" galaxies.

The study of the X-ray properties of local highly star-forming galaxies can provide information on the X-ray emission of high-z star-forming galaxies.

Why Arp 299?

- One of the most powerful starbursts in the local Universe, consists of two galaxies (NGC 3690,IC 694, Hibbard & Yun 1999) separated by 22".
- One of the nearest luminous merging system (44Mpc; Heckman et al 1999) belonging to the class of LIRGS (L_{42-123µm}=2.86x10¹¹Lsun).
- Remarkable similarity with high-z ULIRGs (star-forming activity, integrated mid-IR spectrum; Alonso-Herrero et al 2009).
- Most luminous population of ULXs observed in the local Universe. (Zezas et al. 2003)

Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

Data and Techniques

Chandra X-Ray observatory (spatial resolution~0.492", energy range 0.1-10keV) observed Arp299 with the ACIS-S camera in two occasions (12.03.13 and 13.03.13) for a total of 90ks.

The tools we used for our analysis:

- CIAO v.4.7 and CALDB v.4.6.5
- XSPEC v.12.8.2

BEHR

contact:kanast@physics.uoc.gr

red=soft (0.5-1.2keV) green=medium (1.2-2.0keV) blue=hard (2.0-7.0keV)

4

Results

Source detection

CIAO wavdetect tool:

- 42 detections
- 26 discrete sources exceeding S/N = 3.0

CIAO dmextract tool:

Photometry of the 26 sources.

Mean aperture radius ~1.3"
 (90% of the encircled energy).

0.5-7.0 keV adaptively smoothed image of the merged 90ks Chandra observation of Arp299.

Spectra

- 20 sources (>50counts)
- absorbed power-law model
 3 sources require additional
 or only thermal-plasma
 model.
- sources 23,25 diffuse emission regions.
- source 6 (NGC 3690 nucleus) is an AGN with prominent FeKα line at 6.4 keV. (consistent with NuSTAR results, Ptak et al. 2014)
- Photon index F=0.9-3.9
 nH greater than Galactic.

source 6

contact:kanast@physics.uoc.gr

Dec (J2000)

Hardness ratios and grid

Grid of simulated absorbed power-law spectra on hardness-ratio hardness ratio plot.

Luminosities

- Luminosity range: L=4x10³⁸-5x10⁴⁰erg s⁻¹ (D=44Mpc)
- CIAO srcextent tool :
 9 extended sources
 (90% confidence level)
- 21 Ultra Luminous X-Ray sources (ULXs).

Variability

Total Luminosity

Integrated spectrum of Arp299:

F=1.4 nH1=0.17x10²²cm⁻² nH2=0.52x10²²cm⁻² KT1=0.31 keV KT2=0.86 keV

- Total Luminosity: Lx(0.1-10.0keV)=4.9x10⁴¹ erg s⁻¹ Lx(2.0-10.0keV)=2.9x10⁴¹ erg s⁻¹
- Binaries:
 60% of Lx (0.1-10.0keV)
 79% of Lx (2-10.0keV)

AGN: 10% of Lx (0.1-10.0keV) 16% of Lx (2-10.0keV)

data and folded model

Reduced χ^2 =1.18

contact:kanast@physics.uoc.gr

LXRBs-SFR correlation and Arp299

- From IRAS flux densities :
 Lir(8-1000µm)=5.9x10¹¹Lsun
 - (Helou et al. 1988)
- From Lir(8-1000µm): SFR= 88.89 Msun/yr (Kennicutt et al. 2012)

The position of Arp299 on the Lx(XRBS) -SFR correlation of Mineo et al. 2012.

Lthermal-SFR correlation and Arp299

The position of Arp299 on the Lth-SFR correlation of Mineo et al. 2012.

Number of ULXs/SFR

♦ Arp299:

Nulxs/SFR=0.24 systems/Msun/yr

Lulxs(0.5-8.0 kev)=1.3x10⁴¹ erg s⁻¹

 X-Ray Luminosity function from Mineo et al.2012 :

Nulxs /SFR=0.62 systems/Msun/yr

Lulxs=(1.75+/-0.3)x10⁴¹ erg s⁻¹

Multi-wavelength comparisons

- Red=8µm (non stellar image from Brassington et al. 2015)
- Green=814µm (ACS HST)
- Blue=435µm (ACS HST)
- Magenta circles for L>5x10³⁹ erg s⁻¹
- Blue and Yellow for L<5x10³⁹ erg s⁻¹
- Most luminous ULXs are associated with star-forming regions.

Conclusions

- 26 sources with Luminosities up to 5×10^{40} erg s⁻¹ for S/N>3.0.
- AGN at the nucleus of NGC3690.
- 21 ULXs (probably confusion).
- ◆ Lx (0.1-10 keV)=4.9x10⁴¹ erg s⁻¹ with LxRBs=60%Lx and LAGN=10%Lx.
- Arp 299 verifies relation LxrBs-SFR and Lth-SFR for higher SFR.
- Most of the sources have hard spectra and are associated with young star forming regions (bluer areas) and are most probably HMXBs.

Thank you

Extra slides

Unfolded Spectrum

Source 23 reduced χ^2 =1.9

Source 25, reduced χ^2 =2.1

data and folded model

Source 16 reduced χ^2 =0.6

data and folded model

Ptak et al. 2015:Power-law plus Gaussian fit to the 3–8 keV Chandra spectrum from a 1' region corresponding to the NuSTAR Arp 299 spectral source extraction region.

contact:kanast@physics.uoc.gr