

A Radio Jet Drives a Molecular & Atomic Gas Outflow in Multiple Regions within 1 kpc² of the Nucleus of IC5063

F. Combes(College de France; Observatoire de ParisA. Bostrom(University of Maryland)N. Vlahakis(University of Athens)	K. M. Dasyra	(University of Athens)
	F. Combes A. Bostrom N. Vlahakis	(College de France; Observatoire de Paris) (University of Maryland) (University of Athens)

The importance of molecular outflows – why a focal point of the last years?

- They concern star forming phase, and they can have high mass flow rates wrt ionized gas. $(\dot{M}_{outflow} \sim M_{gas}U_{gas}/d - 10-1000M_{o}/yr - matter if accelerated to V>V_{esc})$
- Direct detection of dense (typically >10⁶ /cm³) gas tracers suceeded in outflows.
- By now ~50 massive molecular outflows have been observed (Herschel, ALMA, PdB,)

Fischer et al. (2010); Feruglio et al. (2010); Sturm et al. (2011); Alatalo et al. (2011); Dasyra & Combes (2011) Aalto et al. (2012); Morganti et al. (2013), Veilleux et al. (2013); Spoon et al. (2013); Combes et al. 2013; Cicone et al. (2014); Garcia-Burillo et al. (2014); Sakamoto et al. (2014), Morganti et al. (2015)...

Observationally, massive outflows are common. How are they initiated?

Radiation pressure drives a tenuous (ionized) gas wind around dense clumps in the galaxy. **Ram pressure** assisted by hydro instabilities destroys &accelerates clouds (Hopkins & Elvis 2010). **Cloud reformation** takes place fast in dense regions

 $t_{\rm cool,mol} \sim 24 \left(\frac{T}{1.1 \times 10^4 {\rm K}}\right)^2 R_{\rm kpc}^2 \sigma_{200}^{-10/3} {
m yr}$ (Spitzer 1978) Cascade effect lead to mass loading.

Observationally, massive outflows are common. How are they initiated?

Radio jets: A similar acceleration path - propagation of a shock front, accumulation of gas in a cocoon, ram pressure, dense clump dissipation, molecular reformation, cascade effects.

According to the 3D galaxy-wide HD simulations of Wagner et al. 2011, 2013:

jets can change the gas distribution in disks even at >500 pc in the direction perpendicular to the propagation despite their collimation.

-> of interest for high-z: at z~2-3, ~30% of ULIRGs are radio galaxies (Sajina+2011)

Goals: Is this true observationally? : Do we observe heating of the gas?

IC5063: gas acceleration & excitation by a radio jet

Observational evidence for a jet affecting the ISM at large scales in the elliptical IC5063: (Morganti+2005,2007,2013,...)

- (1) A radio jet almost aligned with a disk
- (2) [OIII] emission along the jet trail, with highest emission at north & south radio lobes

Observational evidence for a jet affecting the ISM at large scales in the elliptical IC5063: (Morganti+2005,2007,2013,...)

- (1) A radio jet almost aligned with a disk
- (2) [OIII] emission along the jet trail, with highest emission at north & south radio lobes
- (3) HI absorption in front of the north lobe, -500 km/s wrt ordered motions

IC 5063

Observational evidence for a jet affecting the ISM at large scales in the elliptical IC5063: (Morganti+2005,2007,2013,...Tadhunter+2014)

- (1) A radio jet almost aligned with a disk
- (2) [OIII] emission along the jet trail, with highest emission at north & south radio lobes
- (3) HI absorption in front of the north lobe, -500 km/s wrt ordered motions
- (4) A massive wind (of 10^7 - $10^8 M_{\odot}$ in CO) with an H₂ counterpart in the NIR within central 2 kpc.

Our work: spatially-resolved gas acceleration & excitation study based on 4hr-long SINFONI data (Dasyra et al. 2015, arXiv:1503.05484) [Fell]

1.5

1.0

(Åru)

North

lobe

nucleus

South

lobe

500 1000

0.0043

0.0022

0.0001

- At the lobes, velocities (>600 km/s or > V_{rot} +3 σ), indicative of fast outflow. _
- Gas moving at 1000 km/s against the disk is detected at the north lobe. -

Our work: spatially-resolved gas acceleration & excitation study based on 4hr-long SINFONI data (Dasyra et al. 2015, <u>arXiv:1503.05484)</u>

- At the lobes, velocities (>600 km/s or > V_{rot} +3 σ), indicative of fast outflow.
- Gas moving at 1000 km/s against the disk is detected at the north lobe.
- High velocities also at the southern nucleus: result rules out merger remnant scenario

Our work: spatially-resolved gas acceleration & excitation study based on 4hr-long SINFONI data (*Dasyra et al. 2015, <u>arXiv:1503.05484</u>)*

- At the lobes, velocities (>600 km/s or > V_{rot} +3 σ), indicative of fast outflow.

In the north, gas moving toward us is nearer to the hotspot than the gas moving away from us:

- Fast outflow has different directions near the jet-ISM impact point

fast outflow extent for all gas tracers Cyan=blueshifted, Red=redshifted *Our work: spatially-resolved gas acceleration & excitation study based on 4hr-long SINFONI data* (*Dasyra et al. 2015, <u>arXiv:1503.05484</u>)*

- At the lobes, velocities (>600 km/s or > V_{rot} +3 σ), indicative of fast outflow.

In the north, gas moving toward us is nearer to the hotspot than the gas moving away from us:

 Fast outflow has different directions near the jet-ISM impact point
 faint emission even along the northern-most branch: (confirmed by significant detection at 200<V<400km/s)

fast outflow extent for all gas tracers Cyan=blueshifted, Red=redshifted Most striking feature of gas moving at lower V against the disk is a diffuse biconical outflow that starts ~250pc from the nucleus.

Its geometry is not consistent with an AGN/SB driving it: Jet can lead to redshifted emission both N/S of the disk.

[FeII] and H_2 emission unfolds away from the nucleus & around the jet trail with increasing V. stops in the north – in a region where we see a high- σ ridge.

[FeII] and H₂ emission unfolds away from the nucleus & around the jet trail with increasing V. stops in the north – north of the Hb+[OIIII] ridge perpendicularly to the jet trail -> we are associating an outflow with that perpendicular branch deviating from jet trail <-

High-resolution (~10pc) ionized gas data

[FeII] and H₂ emission unfolds away from the nucleus & around the jet trail with increasing V. Diffuse outflowing H₂ gas mass is highest there - computed from H2 (1-0) S(1) and S(3).

Gas scattering:

-> The diffuse/biconical outflow probes a wind created by the cocoon expansion & mass loading OR scattered gas from the dense clouds upon impact of the jet (Dasyra et al. 2015, submitted)

IC5063: gas acceleration & excitation by a radio jet

Overall model: Jet passing through disk, at a small angle. It consecutively encounters several ISM clouds, driving an outflow in (at least) 4 points.

Overall, an outflow is found in >700pc in each direction (perpendicular & parallel to the jet). The effects of the jet passage on the gas kinematics are galaxy-wide, as in the simulations.

Properties of the accelerated gas at different phases:

- Spatial distribution, V are highest for ionized gas, yet comparable for the warm H_2 & [FeII]

ALMA CO(2-1) data:

the cold H₂ outflow velocity is 2-4 times lower

(No info on the spatial distribution of diffuse gas) Morganti et al. (2015)

Major axis position-V diagram

Excitation of the molecular gas: temperature maps assuming LTE

Along the north side of the jet, H₂ (1-0) S(3)/S(1) flux ratio exceeds maximum value for LTE -> fluorescence (+heating) (Dasyra et al. 2015, <u>arXiv:1503.05484</u>)

Dust at north radio lobe hotter than at nucleus (Young+07)

Т_{н2} [К]

Another example of gas excitation attributed to a radio jet.

Radio-loud galaxy 4C12.50 / *IRAS* 13451+1232:

Outflow & regular emission seen in MIR lines H_2 (0-0) S(1) and S(2) in Spitzer Space Telescope data. Outflow carrying 1/3rd of the warm ambient gas, with $M_{outflow}$ (400K)=5*10⁷ M_{\odot}

(Dasyra & Combes 2011)

The cold molecular gas in the outflow was seen in absorption, in CO(2-3), at -1000 km/s

absorption probes few LOS – total mass from emission limit from PdB data: $M_{out} < 1.3 \times 10^{8} M_{\odot}$ Dasyra et al. (2012; 2014)

4C12.50: acceleration & heating of the molecular gas

- Heating & fluorescence are again likely to be taking place
- They could lead to a highly excited CO SLED that could facilitate the discovery at high z.

Massive outflows and galaxy evolution - exciting times ahead of us:

- ALMA will lower the detection limit to $5 \times 10^5 \, {\rm M}_\odot$ in the local Universe & to the PdB limit at z~1
- Archive now built.

Detection limits:

	line	Т (К)	M (M $_{\odot}$)
PdB	CO(1-0)	10	5×10 ⁷	
ALMA JWST	CO(1-0) H ₂ S(1)	10 100	5×10 ⁵ 5×10 ⁵	z=0.025 (d=100 Mpc
ALMA	CO(2-1)	10	~10 ⁸	Z~1

